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117. Product Formula for Nonlinear Semigroups
in Hilbert Spaces

By Yoshikazu KOBAYASHI
Faculty of Engineering, Niigata University

(Communicated by Koésaku YoSipA, M. J. A., Dec. 13, 1982)

1. Introduction. Let H be a real Hilbert space. Let A and B
be maximal monotone (multi-valued) operators in H such that A4+B
is also maximal monotone in H. (We refer to the work of Brezis [2]
for basic results concerning maximal monotone operators.) Let
{S4®); =0}, {Sx(t); t=0} and {S,,x(t); £=0} be the contractive semi-
groups in H generated by —A, —B and —(4 +B), respectively. The
purpose of this paper is to show the following result.

Theorem. If there exists a closed convex set CC D(A) N\ D(B) such
that (I+2A4)"(C)cC and (I4+2B)-(C)C for 2>0, then
@€n S x®r=lim,_., (S,(/n)Sx(t/n)"x
for each x ¢ CND(A)N D(B) and each t=0 and the convergence is uni-
form on each finite interval of [0, oo).

This theorem was proved by Brezis and Pazy in [3] with the extra
assumption that A and B are single-valued. Similar results are
obtained for some Banach spaces as well and will be treated in the
forthcoming paper [5] of the author.

2. Proof of the theorem. (Step 1.) By Proposition 4.5 in [2],
S,(@®) and Sy(t) are contractions on C into itself. So we shall prove
the convergence

lim, ., U+287'T -8 ,(BS:@®))) 'w=I+(A+B)) 'z
for each x ¢ CND(A)N D(B) and each 2>0, from which our assertion
is derived through Theorem 4.3 of [2]. To this end, let 2>>0, fix any
xe CNDM@A)ND(B) and set u(t) any y, to be [+t~ —S,(£)S,®) '
and (I+1(A+B)) 'z, respectively. It can easily be seen that
2.1 A7 (u(t) — 2) =71 (S (DS s(Bu(®) —u(?)),
u(t) are contained in C for all t>0 and () is bounded as {—0-.

Since S,(t) and S,(¢) are contractions from C into itself, the indefinite
integrals

o) =t j: S,(u®)ds and w(t)=t-! j: S.(8)S,(uct)ds

are contained in C for all t>0 and bounded as t—0--. Therefore, one
can choose a null sequence {t,} of positive numbers such that

2.2) w(t,)—uy, v(¢,)—v, and w(t,)—w,

as n—oo, where the symbol — means the weak convergence and u,, v,
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and w, are elements of C.

(Step 2.) We first show that
2.3) Uy="Vy=W,.
For this purpose, we define a functional f: H—[0, co) by

J@=limsup,_. |[y—u®)|f  foryeH,

which was suggested by the work of Baillon [1]. (See also the work
of Opial [6] for basic use of such a functional.) Let yeC. Then,
by Minkowski’s inequality, we have

(£ [ 18— -yl ds)’“
= (t_l I : 1S 5(t—s)yu(®) — S5t — )y ds)’“
+(e [[18ue -y -y as)”
<jud i+ (¢ [ 18,6~y ds)”
and
ISsouty—y=(+" [ 15u0ud - S, ds)”

(7 [ ISa0u—virds)”
<(¢ [[1Sut—suy—yir as)

t 1/2
+(t'1 Jo INOIE dS) .
Let t=t, and let » tend to the infinity. Then, we have
lim sup,_.. [[SxE)u(t,)—y|!

<lim sup, .. t;* j 1S5t —)ult,)—y | ds
0
=f,

for y e C. Similarly, we have

<t'1 j: (| S4(t—8)S () u(t) —y | ds)m

2 1/2
<ISsOuO—yl+(t || 1S.¢—9y -yl ds)
and

18,8t —vl=(¢ [ 18-S, Out) -y ds)”
+(t [ 1s.ey -l ds)”

for y € C, which implies
lim sup,.. | S.(¢.)SsE)ut,)—y |’

<lim sup,__ £* j 18.4(t, — 9)Sp(Eult,) —y | ds

<lim sup,.... [|Sx¢)u(t,) -y’
for y e C. But, since u(t) is bounded as t—04, (2.1) implies
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F@)=lim sup,._... [ S,E)SsE)ut,) -yl
for y e H. It turns out that

@4  f@)=limsup,.. t;’ j 1S5t —Sut,) —yF ds

—lim sup, ., t-* j 1S.4(t — $)S5(E)ult,) —y| ds

for all ye C. We now put C,={y e C; f(y)=inf,, f()}. Since
(@) — Y|P = | w(®) — o "+ | by — ¥ | +2<0(E) — %o, Up—¥>
for y € C, it follows that
SWz=fw)+|u,—y|?  for yeC.
Since %, € C, it yields C,={u,}. Similarly, for each y € C,

0 [ 1Saenu) ~yIF ds=t [ ISy(utt)—vil? ds

o=y +2{0(@) — Vo, Vo—VD,s
which implies, by (2.4).
SN=fw)+lvo—y|f  foryeC.

Thus we have Cy={v,}. Similar argument through (2.4) implies C,
={w,} and hence we obtain (2.3).

(Step 3.) Now let z, € Ay, and 2, € By, be such that y,+1(z,+25)
=x. By Proposition 3.6 in [2], it follows that

IS S@u®) — v,

USSR~ olF+2 [| <200 SAOSaERuc) — vy ds

=||Sp(B)u(t) — Yo | 428 — 24, W) —Yo-
Similarly,
1S 2()u(®) — Yol < [ u(t) — Yo [P + 28 — 25, V(E)—Yoy-
On the other hand, (2.1) implies that
1S4BS s Ou®) — yo|* = [|u () — Yo I +2{S 4S5 (E)u(t) — u(®), u(®)—vop
= u(®) — Yol +282 ut) — &, u()—yo).
Combining these inequalities, we can show that
@) — ol < (X —Yor (@) —Yo) +<{— 224 WE)—Yo)
+{— 22, V) =Y.
Let t=t, be ag in (2.2) and let » tend to the infinity. Since u(t,), v(t,)
and w(t,) converge weakly to the same u,, it follows that
lim sup,_.. [[%(¢,) — Yo S (& —Yo— A2, — 225, Up—Yo)-
Thus, u(t,) converges strongly to ¥,. Q.E.D.
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