80. A Note on Modularity in Atomistic Lattices

By Shûichirô MAEDA

Department of Mathematics, Ehime University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

Let L be an atomistic lattice ([1], (7.1)), and let A, B be subsets of L. If (a, b) is a modular pair (resp. dual-modular pair) for every $a \in A$ and $b \in B$, we write (A, B)M (resp. $(A, B)M^*$). We denote by Ω the set of atoms of L, and we put

$$\Omega^n = \{ p_1 \vee \cdots \vee p_n ; p_i \in \Omega \} \qquad (n = 1, 2, \cdots).$$

Evidently, $\Omega^1 = \Omega$ and $\Omega^n \subset \Omega^{n+1}$. Moreover, we put

$$F = \bigcup_{n=1}^{\infty} \Omega^n \cup \{0\}.$$

(L, F)M means that L is finite-modular ([1], (9.1)), and each of $(\Omega, L)M$ and $(\Omega, L)M^*$ is equivalent to that L has the covering property ([1], (7.6)). If $A_1 \subset A_2$ and $B_1 \subset B_2$, then evidently $(A_2, B_2)M$ implies $(A_1, B_1)M$, and $(A_2, B_2)M^*$ implies $(A_1, B_1)M^*$.

In the previous paper [3], the following equivalences and non-trivial implications were proved:

- (1) For any $A \subset L$, $(A, L)M \iff (A, L)M^*$, $(A, F)M \iff (A, F)M^*$, $(A, \Omega^n)M \iff (A, \Omega^{n-1})M^*$ $(n \ge 2)$. $((L, \Omega)M$ always holds.)
 - (2) $(L, F)M^* \Longrightarrow (F, L)M^*$.
 - (3) $(L, \Omega^n)M^* \iff (L, F)M^* \text{ for } n \ge 1.$
 - (4) $(F, \Omega^n)M^* \iff (F, F)M^* \text{ for } n \ge 1.$
 - (5) $(\Omega^n, F)M^* \iff (F, F)M^* \text{ for } n \ge 2.$
 - (6) $(\Omega^n, \Omega)M^* \iff (\Omega^{n-1}, \Omega^2)M^* \iff \cdots \iff (\Omega^2, \Omega^{n-1})M^* \text{ for } n \geq 3.$
 - (7) $(\Omega^2, \Omega^{n-1})M^* \Longrightarrow (\Omega, \Omega^n)M^*$ for $n \ge 2$.

Moreover, it was shown by examples that the implications (2) and (7) and the following implications are not reversible:

$$(\Omega^2, L)M^* \Longrightarrow (\Omega^2, F)M^* \Longrightarrow \cdots \Longrightarrow (\Omega^2, \Omega^n)M^* \Longrightarrow \cdots \Longrightarrow (\Omega^2, \Omega)M^*,$$

$$(\Omega, L)M^* \longrightarrow (\Omega, F)M^* \longrightarrow \cdots \longrightarrow (\Omega, \Omega^n)M^* \longrightarrow \cdots \longrightarrow (\Omega, \Omega)M^*,$$

$$(\Omega^2, L)M^* \Longrightarrow (\Omega, L)M^*, \qquad (\Omega^2, F)M^* \Longrightarrow (\Omega, F)M^*.$$

But, it remained open whether the following implications are reversible or not:

$$(F, L)M^* \Longrightarrow \cdots \Longrightarrow (\Omega^n, L)M^* \Longrightarrow \cdots \Longrightarrow (\Omega^2, L)M^*.$$

In this paper, we shall prove that these implications are reversible, that is,

Theorem. For an atomistic lattice L,

(8) $(\Omega^n, L)M^* \iff (F, L)M^* \text{ for } n \ge 2.$

To prove this theorem, we prepare the following lemma which

follows from [1], (1.5) by the duality.

Lemma. Let a, b and c be elements of a lattice L.

- (i) If $(a,b)M^*$ and $(a \lor b,c)M^*$ then $(a_1,b \lor c)M^*$ for any $a_1 \in L[a,a \lor c]$.
- (ii) If $(a,b)M^*$ then $(a_1,b_1)M^*$ for any $a_1 \in L[a,a \vee b]$ and $b_1 \in L[b,a \vee b]$.

Proof of the theorem. It suffices to prove that $(\Omega^n, L)M^*$ implies $(\Omega^{n+1}, L)M^*$ for $n \ge 2$. Assume $(\Omega^n, L)M^*$, and let $u \in \Omega^{n+1}$, $a \in L$. We put $u = p_0 \lor p_1 \lor \cdots \lor p_n$ where $p_i \in \Omega$. If $p_i \le a \lor p_0 \lor p_1 \lor \cdots \lor p_{i-1}$ for some i $(0 \le i \le n)$, then putting $v = p_0 \lor p_1 \lor \cdots \lor p_{i-1} \lor p_{i+1} \lor \cdots \lor p_n$, we have $v \in \Omega^n$ and $a \lor v = a \lor u$. Since $(v, a)M^*$ by the assumption and since $u \in L[v, v \lor a]$, we have $(u, a)M^*$ by (ii) of the above lemma. Hence, we may assume that

 $(*) p_i \leq a \vee p_0 \vee p_1 \vee \cdots \vee p_{i-1} \text{for every } i = 0, 1, \cdots, n.$

Since $(\Omega^n, L)M^*$ implies the covering property, L is an AC-lattice ([1], (8.7)) and hence $L[a, a \vee u]$ is also an AC-lattice by [1], (8.18). Hence, for every $x \in L[a, a \vee u]$ we can define the height h(x) of x in $L[a, a \vee u]$ ([1], (8.5)). It follows from (*) that $h(a \vee u) = n+1$. Now, we shall show that

$$(**)$$
 $(c \wedge u) \vee a = c$

for every $c \in L[a, a \vee u]$. First, we assume $h(c) \leq n-1$. We put $v = p_1 \vee \cdots \vee p_n$ and $v' = (p_0 \vee c) \wedge v$. If $p_0 \vee c \geq v$, then we would have $p_0 \vee c \geq p_0 \vee v \vee a = a \vee u$ and then $n+1 = h(a \vee u) \leq h(p_0 \vee c) \leq h(c) + 1 \leq n$, a contradiction. Hence, $p_0 \vee c \geq v$ and hence v' < v. We have $v' \in \Omega^{n-1}$ since $v \in \Omega^n$, and hence $p_0 \vee v' \in \Omega^n$. Using $(p_0 \vee v', a)M^*$ and $(v, p_0 \vee a)M^*$, we obtain

$$(c \wedge u) \vee a = (c \wedge (p_{\scriptscriptstyle 0} \vee v)) \vee a \geq (c \wedge (p_{\scriptscriptstyle 0} \vee v')) \vee a = c \wedge (p_{\scriptscriptstyle 0} \vee v' \vee a) = c \wedge (((p_{\scriptscriptstyle 0} \vee c) \wedge v) \vee p_{\scriptscriptstyle 0} \vee a) = c \wedge (p_{\scriptscriptstyle 0} \vee c) \wedge (v \vee p_{\scriptscriptstyle 0} \vee a) = c \wedge (u \vee a) = c \geq (c \wedge u) \vee a,$$

which implies (**). Next, if h(c)=n, then there exist $c_1, c_2 \in L[a, a \vee u]$ such that $h(c_1)=n-1$, $h(c_2)=1$ and $c=c_1\vee c_2$. Since $n-1\geq 1$, $(c_i\wedge u)\vee a=c_i$ (i=1,2) as above. Hence,

$$(c \wedge u) \vee a \geq (c_1 \wedge u) \vee (c_2 \wedge u) \vee a = c_1 \vee c_2 = c \geq (c \wedge u) \vee a.$$

If h(c)=n+1, then (**) holds since $c=a\vee u$.

If $d \ge a$, then putting $c = d \land (a \lor u)$, we have $c \in L[a, a \lor u]$ and $c \land u = d \land u$. Hence, by (**) we have

$$(d \wedge u) \vee a = (c \wedge u) \vee a = c = d \wedge (u \vee a).$$

Therefore $(u, a)M^*$ holds.

Remark. In [3], the six statements (2)–(7) were proved by the aid of the concept of P-relation, introduced in [2]. We remark that three of them directly follow from (i) of the above lemma. We can show the following statement:

(9) For any $A \subset L$, $(A \vee \Omega_0, \Omega^{n-1})M^* \Longrightarrow (A, \Omega^n)M^*$ $(n \ge 2)$, where $A \vee \Omega_0 = \{a \vee p : a \in A, p \in \Omega \cup \{0\}\}.$

In fact, if $a \in A$ and $u \in \Omega^n$, then putting $u = p \vee v$ with $p \in \Omega$ and $v \in \Omega^{n-1}$, we have $(a, p)M^*$ and $(a \vee p, v)M^*$ by $(A \vee \Omega_0, \Omega^{n-1})M^*$, and hence $(a, p \vee v)M^*$ by the lemma.

Now, it is easy to verify that (3) and (4) follows from (9), since if A = L or F then $A \vee \Omega_0 = A$. Moreover, it follows from (9) that

 $(\Omega^n, \Omega)M^* \Longrightarrow (\Omega^{n-1}, \Omega^2)M^* \Longrightarrow \cdots \Longrightarrow (\Omega^2, \Omega^{n-1})M^* \Longrightarrow (\Omega, \Omega^n)M^*,$ which includes (7) and a half of (6).

References

- [1] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Springer-Verlag, Berlin (1970).
- [2] S. Maeda: On finite-modular atomistic lattices. Algebra Universalis, 12, 76-80 (1981).
- [3] —: On modularity in atomistic lattices (to appear in Colloq. Math. Soc. János Bolyai, 33 (Contributions to lattice theory)).