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1. Introduction. In this paper we shall study the asymptotic
behavior of solutions of the second order differential equation
(1) 2" +a) fi(@)g,(@)x +b@) f(2)g,(x)x=e(t, x, x")
or an equivalent system
(2) =y, Y=—al)fi(2)9.(y—b@S(2)g(Yx+ e, x, V),
where a(t)>0, b(t)>0, fi(x)>0 and g,(y)>0 (i=1, 2).

In [1], the following theorem was given by T. A. Burton for the
system
(3) ¥=y, Y=—p@®yly—9@),
where p(x)>0 and 0<a<1.

Theorem (Burton). The zero solution of (3) is globally asymp-

totically stable if and only if Lw [p(@) +] 9() [lda= + oo.

In [2], Burton had an extension of this theorem for the following
system:

(4) =1, Y =— f@)h(yy—g(x)+e(t).
On the other hand, for the system
(5) x'=1y, Y = — f@Yy—g@k(y)+e@®),

J. W. Heidel proved in [3] that if I:m [f(x)+]|g(®)|[lde= + oo and if k(y)

satisfies some conditions, then all solutions of (5) converge to the origin
as t—oo, that is the origin is attractive for (5).

The purpose of this paper is to give a sufficient condition and a
necessary condition for the convergence of all solutions of (2) to the
origin as t— oo under the following assumptions.

(I) a(t) and b(t) are continuously differentiable in [0, o).

(I1) fi(®), f:(x), 9,(y) and g.(y) are continuous in R' and e(t, x, y)
18 continuous in [0, co) X R*.

am | ~I%(%)«Ldt<oo and | —~‘~%,-((t£))|—dt<oo.

av f’ Y v as |yloo.
0o 9,(v)

UK v
vy ¥ §MJ Y _gv  foryeR, where M>0.
gz(y) 0 gz('v)
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(VI) There exist continuous, nonnegative functions r,(t) and r,(t)
such that

le(t, z, Y |<r.O+r.@® |y, 0<1L1, j:ri(t)dt<oo (=1, 2).

2. Lemmas, theorems and their proofs. We give the follow-
ing lemmas without their proofs. (See [4], [5].)

Lemma 1. If the function a(t) satisfies (I) and (I1I), then there
exist constants a, and a, such that 0<a,<a(t)<La, for t=0.

Lemma 2. Suppose the assumptions (D—-(III) and (VI). Then
every bounded solution of (2) converges to the origin (0, 0) as t—co.

It is convenient to define the functions F,, F,, G,, G, and G, by

— “ = ’ = ’ 1
F@ = rwdu, F@=[ wwi, ¢w-=[ oy

Gz<y>=f’ Y dv and G.)=LGyy)— LG,  where L>0.
0 92(’1)) 2

Theorem 1. Suppose the assumptions (D—(VI). If rm {f1(@)
0

+|2| fo(@)}dx= 4 oo, then every solution of (2) converges to the origin
0, 0) as t—oo, that is the origin is attractive.

Proof. It follows from (II) and (V) that |y'*¢/g.(y) <m+MG,(y)
for ye R, 0<1<1, where m>0. Let (x(¢), y(t)) be a solution of (2)
through (¢, %, ¥,). Let V., x, ¥)=b@)F,(x)+G,(y)+m/M. Differ-
entiating V,(t)=V,(¢t, 2(t), y(t)) with respect to ¢, we have

Vi) <|b/®)] Fy@)+r,) YLy P
9:(¥) 9Y)

[6'(®)]
g{ b(t) *+M7"1(t)+M/I”2(t)}Vl(t) for tzto-

Integrating Vi) from ¢, to ¢ and applying Gronwall’s lemma, we
obtain

(1) Viosvees || {L’;(ﬁg—' +Mr(s)+ Mr o) jds| =L,

and G,(y() <V, ()<L, for t elt,t,), whenever the solution (z(t), y(¥))
is defined in [¢,, t,). Hence the boundedness of y(t) follows from (IV).
This implies that the solution (x(%), ¥(t)) is defined in the future, since
2{)=y(@). And so there exists B>0 such that |y(#)|<B for t=t,.
Then in the case that F,(x)—oco0 as x— + oo, it follows from (III) and
(7) that F,(x(®))<bi*L, for t=t,. Therefore xz(t) is bounded for t=%,.
On the other hand, in the case that F,(x)—+ oo as — + oo, we define
the function

La®F @+ G +Gr+1 fort=0, =1, |y|<B
Vz(t’x,y)——— 2

%[a(t)Fl(x)qLGl(y)—Go]ZH for t=0, z<—1, |y|<B,
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where G,>sup,,<z|G(¥)|. Now suppose that x(t)>1 for ¢elt, t,].
Differentiating V,(t)=V,(, x(t), y(t)) with respect to ¢, we have

Vit) <[a@®F (2)+ G W) + Go] [l ()| F()+ My—)l]

9:(y)
ov [ 1 €@ or o) ‘ ; -
ENAA) [_a( DLV2V. @ +ino+ B n(t)}{lilnéflg s} |
la@®)|
éLz[ a(d) +rl(t)+rz(t)]Vz(t) for ¢ € [{,, t.]

where L,>0. Then it is easily shown that V,(¢) <L,V,(t) and hence
F.(z(t)<a;'w2L,V,(t) for t e [t, t,], where L, is independent of ¢, and
t,. Since F,(r)—>oco as x—oo, there exists a constant z>1 such that
)<z for telt,t,]. If x(t)=1, then V,(t)<1/2[a,F,Q) + 2G,F + 1.
On the other hand, if x,>1 and if ¢,=%,, then V,(¢)<1/2[a,.F\(z,) +2G,I
+1. Hence 7 is independent of ¢, and ¢,. Therefore x(t) is bounded
from above for t=>t,. Similarly, the boundedness from below of x(¢)
follows by using V,(t, x, ¥).

In the case that F,(x)— oo as £—o0 and Fy(x)—oco as x—— oo or in
the case that F(x)— oo as x—oc0 and F,(x)— — oo as x— — oo, using the
functions V (¢, z,y) and V,(t, x,y), we can show the boundedness of
2(t). Thus every solution of (2) is bounded. This implies from Lemma
2 that every solution of (2) converges to (0, 0) as t—oo. Q.E.D.

Theorem 2. Suppose the assumptions (D-III) and (VD). If

every solution of (2) converges to (0,0) as t— oo, then rw{ fi(x)
0
+lz|fo(2)}de =t 0.
Proof. We shall prove only that r {fi@)+2f(x)}der=co. Sup-
0

pose J: (£,(@) + 2f@)}da< oo. Let V(y)= f " (1/(t+[v))dv. Then there

exists y,>1 such that Vy(y) > V(1) +1+ j " (D +r®)dt, because V()
0

— 400 a8 Yy—>+oo. Let g*=8up;<,<, {9:(¥)+9.(%)/¥} and choose z, so

large that (a,+b,)9* r {fi@)+zf()}de<1l. Let (x(?), y(t) be a solu-

tion of (2) through (¢, %y, ¥,). Since y(f) converges to zero as t—oo,
we can find two numbers ¢,>t, and t,>¢, such that y(t)=v, ¥(¢)=1,
y@®) =y, for t e (¢, t) and 1<y®)<y, for te (¢, t). Then x(t)>wx, for
telt, t,]. Differentiating v(t)=V,(y(t)) with respect to ¢, we obtain
from (VI), for t e [¢t, t,]

V() = — a,g*f ()2 — b.g* [ @)xa’ — 7, () —7y(D).
Hence

V()= 0(t) — a,g* f”“” Fi(@)dx —b,g* j”“” 2 (@)dz
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~j“ (O +r(B)dt
> V(o) — (4 D)™ [ (@) + af (@)} dw— j "yt

>V —1- | n@®+ne)dt.
Then we have v(t,)>V,(1)=v(t,), which is a contradiction. Thus we
conclude that r {1(@) 4+ xf ()} dar = 0. Q.E.D.
0

Now the following Theorem 3 is an immediate consequence of
Theorems 1 and 2.

Theorem 3. Suppose the assumptions ()-(VI). Then every so-
lution of (2) converges to the origin (0,0) as t—oo if and only if

j (F@) +] 2] fi@)}dw= =+ oo.

Remark. If e(t, x, y)=0, then the system (2) has the zero solution
(x(®), y))=(0,0). In this case, Theorem 3 implies that the zero so-

lution is globally asymptotically stable if and only if rw {/fi(x)
0
+| 2| fo{@)}dx = £ co under the assumptions (D-(VI).
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