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1. Introduction. In this paper we shall study the asymptotic
behavior of solutions of the second order differential equation

(x)gl(x )x + b(t)f2(x)g2(x’)x e(t, x, x’).( 1 ) x" +a(t)f
.or an equivalent system
( 2 x’=y, y’-- --a(t)f(x)g,(y)y--b(t)f2(x)g2(y)x+e(t, x, y),
where a(t)>0, b(t)>0, f,(x)>O and g,(y)>O (i=1, 2).

In [1], the following theorem was given by T.A. Burton for the
:system
( 3 ) x’= y, y’= p(x) ]y ]y-- g(x),
where p(x) 0 and 0 <=a 1.

Theorem (Burton). The zero solution of (3) is globally asymp-

totically stable if and only if [p(x)+lg(x)lldx--+_.

In [2], Burton had an extension of this theorem for the following

system"
( 4 ) x’=y, y’= -f(x)h(y)y--g(x)+e(t).
On the other hand, for the system
( 5 ) x’=y, y’=--f(x)h(y)y--g(x)k(y)+e(t),

.J.W. Heidel proved in [3] that if [f(x) + lg(x)l]dx= +_ c and if k(y)

satisfies some conditions, then all solutions of (5) converge to the origin

.as tc, that is the origin is attractive for (5).
The purpose of this paper is to give a sufficient condition and a

necessary condition for the convergence of all solutions of (2)to the
.origin as t--c under the following assumptions.

( I ) a(t) and b(t) are continuously differentiable in [0, c).
(II) f(x), f(x), gl(Y) and g2(y) are continuous in R and e(t, x, y)

is continuous in [0, c)R.
(III) [ _]a’(t)] dtoo and

a(t) b(t)

(IV)
g2(v)

( V )
g(y) g.(v)

as lyl-+oz.

for y R1, where MO.
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(VI) There exist continuous, nonnegative functions r(t) and r(t)
such that

le(t, x, y)]<=r(t)+r(t) [y , 0_</_<1, r(t)dt c (i=1, 2).

2. Lemmas, theorems and their proofs. We give the ollow-
ing lemmas without their proofs. (See [4], [5].)

Lemma 1. If the function a(t) satisfies (I) and (III), then there
exist constants a and a such that Oa, <_ a(t) <_a for t >= O.

Lemma 2. Suppose the assumptions (I)-(III) and (VI). Then
every bounded solution of (2) converges to the origin (0, O) as

It is convenient to define the unctions F, F, G1, G and G by

gl(v)

G2(y) =[ v dv and GL(y)=LG2(y)- I-[GI(y)]2, where L0.
jo g(v) 2

Theorem 1. Suppose the assumptions (I)-(VI).

+lxlf.(x)}dx- +_, then every solution of (2) converges to the origin
(0, O) as t-c, that is the origin is attractive.

Proof. It ollows rom (II) and (V) that lyl*/g(y)<=m+MG(y)
for y e R, 0_</<_1, where m0. Let (x(t), y(t)) be a solution o (2)
through (to, x0, Y0). Let V(t, x, y) b(t)F(x) + G(y) +m/M. Differ-
entiating V(t)= V(t, x(t), y(t)) with respect to t, we have

lyl lylV;(t) <=l b’(t) F(x)+ r(t)-- +r(t)
g(Y)_

{b’(____t)_[_+Mr(t)+Mr (t)} V(t) or t >_ to.
b(t)

Integrating V’(t) from to to t and applying Gronwall’s lemma, we
obtain

(7) V(t)V(to) exp [{ Ib’(s)l +Mr(s)+Mr(s)}ds]=L,b(s)
and G(y(t))<= V(t)<=L for t e [to, t,), whenever the solution (x(t), y(t))
is defined in [to, t). Hence the boundedness oi y(t) ollows rom (IV).
This implies that the solution (x(t), y(t)) is defined in the uture, since
x’(t)=y(t). And so there exists B0 such that ly(t)l<_B or t>=to.
Then in the case that F(x)--c as x-___ c, it 2ollows from (III) and
(7) that F(x(t))<=blL Jor tt0. Therefore x(t) is bounded 2or tt0.
On the other hand, in the case that F(x)-- +_ c as x--_+, we define
the unction

V(t,x,y)__([a(t)F(x)+G(y)+Go]+l_ ort>=0, xX,

[a(t)F(x)+G,(y)-Go]+l ort0, x-l,
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where G0sup_ IG(y) I. Now suppose that x(t)>__l for t e [t, t.].
Differentiating V.(t)= V(t, x(t), y(t)) with respect to t, we have

V;(t) < [a(t)F(x) + G(y) + Go] [I a’(t) F(x)+ e(t, x, y)]
2--- [a’(t)l-2(t)+{r(t)+Ber(t)}{ inf g(y)}-]t a(t)

L[ a’(t) +r(t)+ r(t)]V(t) for t e [t,, t]
a(t)

where L0. Then it is easily shown that V(t)LV(t)and hence
F(x(t))a2LV)for t [t, t], where L is independent of t and

t. Since F(x) as x, there exists a constant 21 such that
x(t)2 for t e [t, t]. If x(t)=l, then V(t)l/2[aF(1) + 2G0] + 1.
On the other hand, if xol and if t=to, then V(t,)l/2[aF(xo)+2Go]
+ 1. Hence is independent of t and t. Therefore x(t) is bounded
from above for t t0. Similarly, the boundedness from below o x(t)
follows by using V(t, x, y).

In the case that F(x) asx and F(x) as x- or in
the case that F(x) asx and F(x)-- as x--, using the
functions V(t, x, y) nd V(t, x, y), we can show the boundedness of
x(t). Thus every solution of (2) is bounded. This implies from Lemma
2 that every solution of (2) converges to (0, 0) as t. Q.E.D.

Theorem 2. Suppose the assumptions (I)-(III) and (VI). If

ever olto o () eovere to (0, O) t, the {f(z)

+lxlf(x)}dx=.
Proof. ,ro e only t at Su,-

.[; {f(x)+xf(x)}dx. Let V(y)=.[: (1/(l+v)))dv. Then therepose

exists Y0> 1 such that V(yo) V(1) + 1+[ {r(t) + r(t)}dt, because V(y)

as y . Let g* supo {g(y) + g(y)/y} and choose x0 so

large that (a+b)g* .[ {f(x)+xf(x)}dx4l. Let (x(t), y(t)) be a solu-

tion of (2) through (t0, x0, Y0). Since y(t) converges to zero as t,
we can find two numbers tt0 and tt, such that y(t)=yo, y(t)= 1,
y(t)Yo for t e (t0, t) and 1y(t) Yo for t e (tl, t). Then x(t) Xo or
t e [t0, t]. Differentiating v(t)= V(y(t)) with respect to t, we obtain
rom (VI), for t e [tl, t]

v’(t) -ag*fl(x)x’- bg*f(x)xx’- r,(t) r(t).
Hence

[x(t)v() v() eg* f(z)d bg*
o o
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r| {r(t) + r(t)}dt
Jt

.[: {r(t)+ r(t)}dt.V(yo) 1

Then we have v(t) V(1)=v(t), which is a contradiction. Thus we

conclude that Q.E.D.

Now the following Theorem 3 is an immediate consequence of
Theorems 1 and 2.

Theorem 3. Suppose the assumptions (I)-(VI). Then every so-
lution of (2) converges to the origin (0, O) as t-+c if and only if: {f(x)+lx’ f(x)}dx= -+-c.

Remark. If e(t, x, y)--O, then the system (2) has the zero solution
(x(t), y(t))=(0, 0). In this case, Theorem 3 implies that the zero so-

lution is globally asymptotically stable if and only if {f(z)

+lxlf(x)}dx= +_ under the assumptions (I)-(VI).
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