86. On Richardson Classes of Unipotent Elements in Semisimple Algebraic Groups

By Takeshi HIRAI

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic zero. Let P be a parabolic subgroup of G and U_P its unipotent radical. A unipotent class in G is called a Richardson class corresponding to P if it intersects U_P densely [6]. We study here the correspondence between Richardson classes and parabolic subgroups in detail. Note here that, as is shown in [3], we naturally encounter the notion of Richardson classes or more generally that of induced classes, in the study of Fourier transform of unipotent orbital integrals on a connected semisimple Lie group.

§ 1. Let g be the Lie algebra of G, h a Cartan subalgebra of g, Σ the root system of (g, h), Σ^+ the set of all positive roots in Σ , and Π the set of all simple roots. For a subset Γ of Π , we define a standard parabolic subgroup $P(\Gamma)$ of G as follows. Put $\Gamma^{\perp} = \{X \in h; \gamma(X) = 0$ $(\gamma \in \Gamma)\}$, and $L(\Gamma) = \{g \in G; \operatorname{Ad}(g)X = X \ (X \in \Gamma^{\perp})\}$. Further let $\langle \Gamma \rangle$ be the set of all roots in Σ expressed as integral linear combinations of $\gamma \in \Gamma$, U_{α} the one-dimensional unipotent subgroup corresponding to α $\in \Sigma$, and $U(\Gamma)$ the subgroup generated by U_{α} 's for $\alpha \in \Sigma^+ - \langle \Gamma \rangle$. Then $P(\Gamma) = L(\Gamma)U(\Gamma)$ is a parabolic subgroup of G with a Levi subgroup $L(\Gamma)$ and the unipotent radical $U(\Gamma)$. Note that $\langle \Gamma \rangle$ is the root system of $L(\Gamma)$ and $\Sigma^+ - \langle \Gamma \rangle$ is the ideal $I(\Pi - \Gamma)$ of Σ^+ generated by $\Pi - \Gamma$ in the sense of [7, § 2].

For Γ , $\Gamma' \subset \Pi$, we define " $\Gamma \sim \Gamma'$ in Σ " if the Richardson classes corresponding to $P(\Gamma)$ and $P(\Gamma')$ coincide with each other. Remark that $\Gamma \sim \Gamma'$ here is equivalent to $I(\Pi - \Gamma) \sim I(\Pi - \Gamma')$ in [7, § 2].

Rewriting Theorem 1.7 in [5], we have the following.

Theorem 1 [5]. Let W be the Weyl group of the root system Σ , and let Γ , $\Gamma' \subset \Pi$. If $w\Gamma = \Gamma'$ for some $w \in W$, then $\Gamma \sim \Gamma'$.

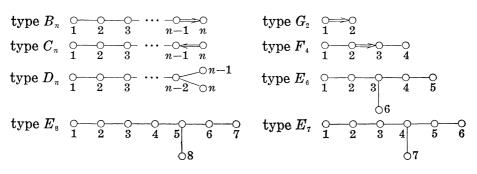
We also have the following general theorem.

Theorem 2. Let Π_1 , Π_2 be two subsets of Π orthogonal to each other, and let Γ_i , Γ'_i be two subsets of Π_i for i=1, 2. Assume that $\Gamma_i \sim \Gamma'_i$ in the root system $\langle \Pi_i \rangle$ for i=1, 2. Then $\Gamma = \Gamma_1 \cup \Gamma_2 \sim \Gamma' = \Gamma'_1 \cup \Gamma'_2 \subset \Gamma' = \Gamma'_1 \cup \Gamma'_2 \cup \Gamma' = \Gamma'_1 \cup$

§ 2. We call a subsystem of the relations $\Gamma \sim \Gamma'$ in various (Π, Σ)

T. HIRAI

fundamental if it generates under the properties of \sim in Theorems 1 and 2 the whole relation \sim . We list up here a system of fundamental relations. The simple roots α_i 's in each type of irreducible root systems are numbered as follows.



We denote simply by Z a root system of type Z.

- (1) In B_n or C_n with n=3k-1, $k \ge 1$, $(\Pi \{\alpha_{2k-1}\}) \sim (\Pi \{\alpha_{2k}\})$.
- (2) In D_4 , $\{\alpha_1, \alpha_2\} \sim \{\alpha_1, \alpha_3, \alpha_4\}$.
- (3) In D_n with n=3k+1, $k \ge 2$, $(\Pi \{\alpha_{2k}\}) \sim (\Pi \{\alpha_{2k+1}\})$.
- (4) In E_6 , $(\Pi \{\alpha_3\}) \sim (\Pi \{\alpha_4, \alpha_6\})$.
- (5) In E_8 , $(\Pi \{\alpha_4\}) \sim (\Pi \{\alpha_6, \alpha_8\})$.
- (6) In F_4 , $\{\alpha_1, \alpha_2, \alpha_4\} \sim \{\alpha_1, \alpha_3, \alpha_4\} \sim \{\alpha_2, \alpha_3\}$.
- (7) In G_2 , $\{\alpha_1\} \sim \{\alpha_2\}$.

Let σ be the unique non-trivial automorphism of the Dynkin diagram of D_{2k+1} or of E_{6} .

(8) In D_{2k+1} $(k \ge 2)$ or in E_6 , $\sigma \Gamma \sim \Gamma$ for any $\Gamma \subset \Pi$.

One of our main results is the following.

Theorem 3. Under the properties of the relation \sim in Theorems 1 and 2, the system of relations (1)–(8) is fundamental.

To get a smaller system consisting of mutually independent relations, (8) is replaced by (8') below. Further the set of relations in Theorem 1 can be replaced by (9) below. That is,

Theorem 4. The system of relations (1)–(7), (8') and (9) generates the whole relation \sim under the property of \sim in Theorem 2.

- (8') In $D_{2k+1}(k \ge 2)$, $(\Pi \{\alpha_{2k}\}) \sim (\Pi \{\alpha_{2k+1}\})$. In $E_{\mathfrak{s}}$, $(\Pi \{\alpha_{1}\}) \sim (\Pi \{\alpha_{2k}\}) \sim (\Pi \{\alpha_{2k}\})$.
- (9) In A_n , if $w\Gamma = \Gamma'$ for Γ , $\Gamma' \subset \Pi$ with some $w \in W$, the Weyl group of A_n , then $\Gamma \sim \Gamma'$.

§ 3. Let us now determine the Richardson class corresponding to $P(\Gamma)$ by means of Γ . To do so, we turn to g instead of G for convenience of statement. After Hotta-Springer [4, p. 119], we call a nilpotent element $X \in \mathfrak{g}$ of parabolic type with respect to $P(\Gamma)$ if its class $G(X) = \{\operatorname{Ad}(g)X; g \in G\}$ intersects $\mathfrak{u}(\Gamma)$ densely, where $\mathfrak{u}(\Gamma)$

denotes the sum of the root subspaces g_{α} over $\alpha \in \Sigma^+ - \langle \Gamma \rangle$. For classical types B_n , C_n , and D_n , it is convenient to use as a parameter for the class G(X) the Jordan normal form of X under conjugations of GL(N, K) with N=2n+1, 2n or 2n respectively. For exceptional types, the (weighted) Dynkin diagram of X [8, p. 243] is used as a parameter.

Classical types. Let X be conjugate under GL(N, K) to $J(p_1)$ $\oplus J(p_2) \oplus \cdots \oplus J(p_s), p_1 \ge p_2 \ge \cdots \ge p_s, p_1 + p_2 + \cdots + p_s = N$, where J(p) is the $p \times p$ Jordan matrix with entries 1 just above the diagonal and zero except there (cf. [3, § 2]). Then we say that X is of Jordan type (p_1, p_2, \dots, p_s) . Note that in D_n with n even, if all p_i are even, exactly two classes have the same Jordan type (p_1, p_2, \dots, p_s) , and that the Dynkin diagram of X is obtained from (p_1, p_2, \dots, p_s) as in [8, pp. 263– 264].

One knows that for B_n or D_n ,

No. 7]

(BD1) the multiplicity of any even integer in p_i 's is even.

Theorem 5. A nilpotent element X in B_n or D_n of Jordan type (p_1, p_2, \dots, p_s) is of parabolic type if and only if it satisfies the condition (BD2) below.

(BD2) Let p_i be even and p_j are all odd for j < t. Then, for p_j with $j \ge t$, (i) the multiplicity of any odd integer in p_i 's is at most two, and (ii) if $p_i, p_{i+1}, \dots, p_{j-1}$ are all odd and of multiplicity 1, and i=1 (resp. j-1=s) or p_{i-1} (resp. p_j) is even or multiplicity 2, then i-j is even.

The condition (BD2) can not be expressed in a simple manner by means of the Dynkin diagram. The analogous result for type C_n was given in [3, § 5]. These are essentially contained in [2].

Let X be of parabolic type with respect to $P(\Gamma)$. Then, we can determine the Jordan type of X by means of Γ similarly as for type C_n in [3, § 5]. This is nothing but the Spaltenstein mapping in [2, p. 225]. Note that, for D_n with n even, an additional discussion is necessary when all p_i are even.

Exceptional types. A nilpotent element $X \in \mathfrak{g}$ is called *even* if the weights in its Dynkin diagram are all 0 or 2. Every even nilpotent element is of parabolic type and the corresponding Γ is $\Gamma_X = \{\alpha \in \Pi;$ the weight of X for α is zero}, or $\Gamma \sim \Gamma_X$. We give a complete list of non-even nilpotent classes of parabolic type and one of the corresponding subsets $\Gamma \subset \Pi$ for each class. We list up together with the Dynkin diagram of X the type of a minimal regular subalgebra containing X (cf. [1, pp. 176–185]), which is used in [7, Tables 1–3, pp. 446–449] as a name of the class G(X).

T. HIRAI

[Vol. 57(A),

	Dynkin diagram	Name of class	Corresponding Γ
${\rm type}\ F_{_4}$	1 0 1 2	$C_{\scriptscriptstyle 3}$	$\{\alpha_1, \alpha_2\}$
type $E_{\scriptscriptstyle 6}$	$\begin{smallmatrix}1&0&0&0&1\\&0\end{smallmatrix}$	$2A_1$	$\Pi - \{\alpha_1\}$
	$\begin{smallmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{smallmatrix}$	$A_{2}\!+\!2A_{1}$	$\Pi - \{ lpha_2 \}$
	$\begin{smallmatrix}1&0&0&0&1\\&&2\end{smallmatrix}$	$A_{\scriptscriptstyle 3}$	$\Pi - \{ \alpha_1, \alpha_2 \}$
	11011	$A_4\!+\!A_1$	$\Pi - \{ \alpha_2, \alpha_4 \}$
	1 1 $\stackrel{-}{0}$ 1 1 2	$D_{5}(a_{1})$	$\{\alpha_1, \alpha_2, \alpha_4\}$
${\rm type}\ E_{\tau}$	$\begin{array}{r} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ \end{array}$	$D_4(a_1) + A_1$	$\Pi - \{ \alpha_6, \alpha_7 \}$
	$\begin{array}{c} 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ 0 \end{array}$	$A_4 \! + \! A_1$	$\Pi - \{\alpha_5, \alpha_7\}$
	$\begin{smallmatrix}&1&0&1&0&2\\&&0\end{smallmatrix}$	$D_{5}(a_{1})$	$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$
	$\begin{smallmatrix}&&1&1&0&1&2\\&&&1\\&&&1\end{smallmatrix}$	$D_{5}\!+\!A_{1}$	$\{\alpha_1, \alpha_2, \alpha_4, \alpha_5\}$
	$\begin{smallmatrix}&&&&&\\&2&0&1&0&1&2\\&&&&1\end{smallmatrix}$	$D_{6}(a_{1})$	$\{\alpha_1, \alpha_2, \alpha_3\}$
${\rm type}\ E_{\scriptscriptstyle 8}$	$\begin{smallmatrix}&0&0&1&0&0&1&0\\&&0\end{smallmatrix}$	$A_4 \!+\! A_2 \!+\! A_1$	$\Pi - \{ lpha_{\scriptscriptstyle 6} \}$
	$\begin{smallmatrix}&0&0&1&0&1&0&1\\&&0\end{smallmatrix}$	$A_{\scriptscriptstyle 6}\!+\!A_{\scriptscriptstyle 1}$	$\Pi - \{\alpha_5\}$
	$\begin{smallmatrix}2&1&0&0&0&1&0\\&&1\end{smallmatrix}$	$D_{\scriptscriptstyle 6}\!(a_{\scriptscriptstyle 1})$	$\Pi - \{\alpha_6, \alpha_7, \alpha_8\}$
	$\begin{smallmatrix}1&0&1&0&1&0&1\\&&0\end{smallmatrix}$	$D_7(a_2)$	$\Pi - \{\alpha_5, \alpha_7\}$
	$\begin{smallmatrix}2&0&1&0&1&0&1\\&&0\end{smallmatrix}$	$E_{6}(a_{1}) + A_{1}$	$\Pi - \{ \alpha_5, \alpha_7, \alpha_8 \}$
	$\begin{smallmatrix}2&0&1&0&1&0&2\\&&0\end{smallmatrix}$	$D_{_{6}}\!+\!A_{_{1}}$	$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$
	$\begin{smallmatrix}2&2&0&1&0&1&2\\&&&1\end{smallmatrix}$	$E_{\tau}(a_1)$	$\{\alpha_1, \alpha_2, \alpha_3\}$

§ 4. Sketch of the proof. (1°) The property (8) in § 2 follows from the invariance of the Dynkin diagram of any nilpotent element under σ (see [8, p. 264] for D_{2n+1} , and [2, Table 18, p. 178] for E_{ϵ}).

(2°) For classical types we first prove the results in § 3 in a similar way as in [3, § 5]. (Note that the uniqueness of maximal elements modulo conjugacy in Lemma 5.5 in [3] follows from that of the class which intersects $u(\Gamma)$ densely.) We can also get this result from that in [2]. Now, Theorem 4 for this case is proved by the process itself of determining explicitly the Jordan type of X of parabolic type with respect to $P(\Gamma)$ by means of Γ .

(3°) For exceptional types, we discuss type by type inductively according to the ranks of root systems. We first classify the subsets Γ of Π under (1)-(3), (8'), (9) and Theorem 2. Then for every representative Γ , we determine the diagram of an X corresponding to $P(\Gamma)$, using the following.

(i) The dimension of G(X) is equal to $2 \dim \mathfrak{u}(\Gamma)$ by Theorem

No. 7]

1.3(a) in [6]. The dimension of any class is given by the Dynkin diagram of its elements as dim g-dim g(0)-dim g(1), where g(j) is the space spanned by g_{α} 's for roots α with weight j [8, p. 241].

(ii) When there exist some number (2 or 3) of classes of dimension 2 dim $\mathfrak{u}(\Gamma)$, we find by calculations, for one of them *C*, its representative $X \in \mathfrak{g}(2)$ of the form $X = \Sigma_{a \in \Psi} X_a$ with $X_a \in \mathfrak{g}_a, \neq 0$, and $\Psi \subset \Sigma(\mathfrak{g}(2))$ consisting of linearly independent roots (cf. [8, p. 246]), and a $w \in W$ such that $w \Psi \subset \Sigma(\mathfrak{u}(\Gamma))$ for an appropriately chosen representative Γ under the above classification. Here for a subspace \mathfrak{a} of \mathfrak{g} , we put $\Sigma(\mathfrak{a}) = \{\alpha \in \Sigma; \mathfrak{g}_a \subset \mathfrak{a}\}$. This proves that *C* is just the class corresponding to $P(\Gamma)$.

The validity of Theorem 4 for this case can be seen now.

Remark. More elementarily, we need not use Theorem 1.3(a) in [6]. In fact, even when there exists only one class of dimension $2 \dim \mathfrak{u}(\Gamma)$, we can proceed as in (ii), and then $\dim G(X)=2 \dim \mathfrak{u}(\Gamma)$ is obtained as its consequence.

We shall give two examples to explain the situation in (ii) more in detail.

Example 1. Type E_s . Take $\Gamma = \Pi - \{\alpha_5, \alpha_7\}$ in the list in § 3. To prove that the Richardson class corresponding to $P(\Gamma)$ is the class with Dynkin diagram ¹⁰¹⁰¹⁰¹ and named $D_7(a_2)$ in [7, p. 448], we proceed as follows. (Other classes of the same dimension, 216, are with diagram ²¹⁰⁰⁰¹² and named D_6 , and with ²²²⁰⁰⁰² named E_6 .) Let $\Gamma' = \Pi - \{\alpha_4, \alpha_7\}$, then $\Gamma' \sim \Gamma$ in Σ by (3) for D_7 . We can find a $\Psi \subset \Sigma(\mathfrak{g}(2)) \cap \Sigma(\mathfrak{u}(\Gamma'))$ such that $X = \Sigma_{\alpha \in \Psi} X_{\alpha}$ is a nilpotent element of type $D_5 + A_3$ and that $\operatorname{ad}(X)\mathfrak{g}(0) = \mathfrak{g}(2)$ (cf. [1, Table 20, p. 184]). The Ψ is given below, where a root is expressed by its coefficients with respect to simple roots.

Example 2. Type E_8 . The most complicated was to establish the relation (5) in § 2. Put $\Gamma = \Pi - \{\alpha_4\}$, $\Gamma' = \Pi - \{\alpha_6, \alpha_8\}$, and let C and C' be the Richardson classes corresponding to $P(\Gamma)$ and $P(\Gamma')$ respectively. Then they have the same dimension 208, and the class C is even, with Dynkin diagram $\begin{array}{c} 0002000 \\ 0 \end{array}$ and named $2A_4$. There is another unipotent class of the same dimension, with Dynkin diagram $\begin{array}{c} 2101001 \\ 0 \end{array}$ and named $D_5 + A_1$.

To prove C' = C, first we study $\Sigma(\mathfrak{g}(2))$ for C. It contains five kinds of subset \mathscr{V} such that $X = \sum_{\alpha \in \mathscr{V}} X_{\alpha}$ satisfies $\operatorname{ad}(X)\mathfrak{g}(0) = \mathfrak{g}(2)$, and that the minimal regular subalgebra containing X is of type $2A_4$, $A_5 + A_2 + A_1$, $D_4(a_1) + D_4$, $D_5(a_1) + A_3$, or $D_6(a_2) + 2A_1$. (Here "of type $D_4(a_1) + D_4$ " means that it is of type $D_4 + D_4$ as algebra and contains X as its semiregular element of type $D_4(a_1) + D_4$.) We give examples of \mathscr{V} one for each type. Let β_i (1 $\leq i \leq 6$), γ_j (1 $\leq j \leq 5$), and δ_k (1 $\leq k \leq 5$) be positive roots given as follows:

0001000, 0	0011100, 0	0001210, 1	0011110, 1	01111110, 0	01111111; 1
1111100, 1	$ \begin{array}{c} 11111111, \\ 0 \end{array} $	0011221, 1	0111100, 1	0001211; 1	
0001221,	0111211,	1111111, 1	0011111,	1111211.	

1 1 1 0 Then Ψ , one for each type is given as

 $\begin{array}{rcl} 2A_4 & : & \beta_1, \ \beta_2, \ \beta_3, \ \beta_5, \ \beta_6, \ \gamma_1, \ \gamma_2, \ \gamma_3; \\ A_5 + A_2 + A_1 : & \beta_1, \ \beta_2, \ \beta_3, \ \beta_4, \ \beta_5, \ \beta_6, \ \gamma_1, \ \gamma_2; \\ D_6(a_2) + 2A_1 : & \beta_1, \ \beta_2, \ \beta_3, \ \beta_4, \ \beta_5, \ \gamma_2, \ \gamma_4, \ \gamma_5; \\ D_5(a_1) + A_3 & : & \beta_1, \ \beta_2, \ \beta_3, \ \beta_4, \ \beta_5, \ \delta_1, \ \delta_2, \ \delta_3; \\ D_4(a_1) + D_4 & : & \beta_1, \ \beta_2, \ \beta_3, \ \beta_4, \ \beta_5, \ \beta_6, \ \delta_4, \ \delta_5. \end{array}$

(To prove ad(X)g(0) = g(2) for type $D_{\mathfrak{z}}(a_1) + A_{\mathfrak{z}}$, we use Mizuno's result on $sgn(N_{\mathfrak{a}\mathfrak{z}})$ [7, Table 12, p. 460] in case of type $E_{\mathfrak{z}}$.)

On the other hand, we proved that there is no subset \mathcal{V}' of $\Sigma(\mathfrak{u}(\Gamma'))$ which is of type $2A_4$. However we can find many \mathcal{V}' of type $A_5 + A_2 + A_1$, one of which is given below :

 $\begin{smallmatrix} 0000000, & 0000110, & 0001111, & 0011211, & 0112210, & 0122221, & 1122210, & 1222211. \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{smallmatrix}$

This Ψ' is automatically conjugate under W to the Ψ of type $A_5 + A_2 + A_1$ above.

The author expresses his hearty thanks to Profs. R. Hotta and N. Kawanaka for their valuable comments.

References

- [1] E. B. Dynkin: Semisimple subalgebras of semisimple Lie algebra. Amer. Math. Transl., Ser. 2, 6, 111-245 (1957) (Mat. Sbornik, N. S., 30, 349-462 (1952)).
- [2] W. H. Hesselink: Polarizations in the classical groups. Math. Z., 160, 217-234 (1978).
- [3] T. Hirai: Structure of unipotent orbits and Fourier transform of unipotent orbital integrals for semisimple Lie groups (to appear in the Proceedings of France-Japan Seminar on the Theory of Group Representations).
- [4] R. Hotta and T. A. Springer: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. Math., 41, 113-127 (1977).
- [5] D. S. Johnson and R. W. Richardson: Conjugacy classes in parabolic subgroups of semisimple algebraic groups, II. Bull. London Math. Soc., 9, 245-250 (1977).
- [6] G. Lusztig and N. Spaltenstein: Induced unipotent classes. J. London Math. Soc., 19, 41-52 (1979).
- [7] K. Mizuno: The conjugate classes of unipotent elements of the Chevalley groups E_7 and E_8 . Tokyo J. Math., 3, 391-460 (1980).
- [8] T. A. Springer and R. Steinberg: Conjugacy classes. Seminar on Algebraic Groups and Related Finite Groups. Lect. Notes in Math., vol. 131, Springer-Verlag, pp. 167-266 (1969).