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79. A Remark on the Hadamard Variational Formula. II

By Daisuke FUJIWARA
Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kosaku Yo0sSIDA, M. J. A., Sept. 12, 1981)

§ 1. Introduction. Let f(z) be a real-valued C>-function of « in
R"”. Let 2,={x e R*| f(x)<t} for any real . Then its boundary is 7,
={x e R"| f(x)=t}. We assume the following assumptions for f':

(A.1) £,is a bounded domain diffeomorphic to the unit disc.

(A.2) All values te[—2,0)U(0,2] are regular values of f.

(A.3) £, contains only one critical point «° of f, where f(2*)=0
and f has the non-degenerate Hessian of the index n—1.

For any te[—1,0)U(0,1], we consider the following boundary
value problem for u:
(1.1) A—DHuw(x)=w(x), for x e 2,

1.2) aiu(x)zo, for xey,
v

where v is the outer unit normal to 7, and 1€ C. If 2>0, « is uniquely
determined by w and we put w(x)=N,Dw(x). Let N,(2,x,¥) be the
integral kernel function of the mapping: w—N,(Dw, i.e.,

(1.3) Nc(z)w(m:jg N, z, pywy)dy.

It is well known from the Hadamard variational formula that the
function N,(4, z, ) is continuously differentiable with respect to ¢ if
t+0and z,ye 2_,. The Hadamard variational formula implies that

d
1.4 2 NQ, x,
1.9 g7 (2, 2,9)

_ 1
—[ N, 2, )N, 2, x)wd(;(z)

+j TN G20, TN Gz o) d T 2@
where do is the volume element of 7,, V/N (2, #, y) denotes the component
tangent to 7, of the gradient vector of N,(2, z, ) with respect to z and
{, > denotes the inner product in the tangent vector space to 7,. See,
for instance, Hadamard [6], Aomoto [1], Peetre [8] and Fujiwara-
Ozawa [3].
For any small ¢>0, we have

1.5) N4, @, %) — N4, @, ¥)= j 1 %N,(z, @, y)de
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if x and y € 2_,. Hence the following natural question arises:

(Q) Can one replace ¢ in (1.5) by —1?
This is not a trivial question, because 2, is connected for ¢>0 but £,
has two connected components for ¢t<<0. Cf. Milnor [7].

The aim of this note is to give an affirmative answer to the ques-
tion (Q) above:

Theorem. If 2>0 and x,y ¢ 2_,, we have

vl d
. ——Nl ) b
(1.6) jl\ SN, @ y)\dt<oo
and
a.mn Nl(z,x,y)—N-lu,x,y):j %Nt(z,x,wdt.
-1

Remark. A similar formula for the Green kernels of Dirichlet
problem was discussed earlier in [2].
§ 2. Weak solution to the boundary value problems. Let
H™(2,)={w e L*(2,)|D*w € LXQ,) for |a|<m}
be the Sobolev space of order m>0. Letw ¢ L*2,). Then the solution
u(x) of the boundary value problem (1.1), (1.2) is characterized as fol-
lows: wue H'(2,) and for any ¢ € H(2),

@.1) j . [Vu(x)7¢(x)+zu(x)go(x)]dx:jg w(@)e(x)da.

This formulation is valid even in the case t=0. We can thus define
N, xz,y) for t=0 too. We have, from (2.1), well known a priori
estimate for u=N,(Dw.

Lemma 1. For any te[—1,1] and w e L*(R,), we have

2.2) f PN dx-l—ﬂL INDw(@)f de<i j @) da.

§3. Proof of the theorem. If £<0, £, has two connected com-
ponents, which we denote by £; and 22. We may assume that Q;C
and 22C 2 for t<0. Thus, the space H'(#,) is the direct sum

H'(2)=H'(2)DH(2).
Since each of 2! and 2? has strong cone property, there exists a linear
continuous extension map H'(2)—H'(R"). Composing this with the
restriction map H'(R")—H'(2}), we have a linear continuous extension
map H'(QH)—H'(L2}). Similarly we have a continuous linear extension
map H'(2)—H'(L2}). Thus we have

Lemma 2. If t<0, there exists a linear extension map E,: H'(RQ,)
—H'(Q,) such that for any uwe H'(Q,)

3.1 | E 100y <K || %] zr1c0,y-
Here K is a positive constant independent of t and u.

Lemma 3. For any we L¥(Q_,), we have

1}&1 EN,ADw=N,)w

in the strong topology of L*(Q,) and in the weak topology of H'(2,).
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Proof. By Lemmas 1 and 2, {E,N()w},., forms a bounded set of
H'(2,). Let {t;},., be any sequence such that ¢, 0. Then, there exists
a subsequence {s,}, such that E, N, ()w=wu, converges to a certain
function g € H'(2,) strongly in L*(2,) and weakly in H'(2,). We have
only to prove that g=Ny (2w, which is independent of the sequence
{t,;}. Let ¢ be an arbitrary function in H'(2,). Then its restriction
to 2,, t<0, belongs to H'(R,). Thus, if t<0, we have, from (2.1),

(3.2) j [Vuj(x)7¢(x)+2uj(x)go(x)]dx:j w(@)e(z)dz.
2s 95/

The Schwartz’ inequality gives the estimate

(3.3) j o U@ @)+ 20, ()] dx’

= [LJ“\”W 17U, @)+ 2 |u,() ’2}d90] :

1/2
X|[,..,. 1@+ aig@Pdal .
0 Sj
The right hand side tends to 0 as j goes to co. Hence

j w@p@de=lim [ w@)e(x)de
20 -Qsj

J—oo

=lim N Pu(2)V () + 2u,(2)p(x)]1dx

jooo

=lim ) Fu(2)V p(2) 4 2u () p(x)]dx

oo

=jg [V g(2)V () + 2g() (@)1 dv.

Thus we have g=N,(D)w. This proves Lemma 3.
For any w € L*(2,), N,(Hw € H'(2,) for t>0. Let RN ,()w be its
restriction to £,. Then R,N,(QDw ¢ H'(2,).
Lemma 4. For any w e LXQ,), we have
li{il RN, (Dw=N,Dw

in the strong topology of L¥2,) and in the weak topology of H'(2,).

Proof. First note that {R,N,()w},-, forms a bounded set of H'(2,).
Let {t,}7., be any sequence such that {,\ 0. Then, there exists a sub-
sequence {s,}; such that R,N, (Dw=v, converges to a certain function
g € H'(2,) weakly in H'(2,) and strongly in L*£2,). We have only to
prove that g=Ny(2)w, which is independent of the sequence {s;};. Let
¢ € H'(R"). Then as in the proof of Lemma 3, we have

Lo w(x)p(x)dr= lAim o [Fv () p(2) + 20 () () 1d e

jooo

= L [V g(@)V p(x) 4 2g(@)p()1d.

In the case n>3, the restriction mapping H'(R™—H'(£,) is surjective.
In the case n=2, it is not surjective but its image is dense in H(Q,).
Cf. Grisvard [5]. Therefore for any ¢ € H'(£2,), we have
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[ w@o@da=[ ro@re@ +r9@g@nds.
This means that g=N()w. Lemma 4 is proved.

We can prove convergence of the kernel function N,(2, z,y) itself
as t—0.

Lemma 5. Assume that x and ye 2, Then,

(i) limtto Nz('z, z, y)_"No(27 Z, y)=0,

(ii) limt 10 Nz(zy L, y)“NO(Z, x, y)=0°

Proof. Let I'(z) be a parametrix of (1—4), i.e.,

A—DI'(2)=0(z)+w(2),

where w(z) ¢ Cy3(R™). We may assume that I'(z—«) and I'(z—y) vanish
ifze 2, Let H,x,¥)=NyA, %,¥)—N, 4, x,v). Then
3.4) QA—DH @2, x,y)=0.
Therefore,

HQ, z, y)=j9 j H(3, &A= 4T ¢ ) — (g —2)]
X [2A—A)I(p—y) —w(p—y)1dEdy
=L L, H,2, &, no(&— x)o(n—y)dedsy.

The last equality results from (8.4) and integration by parts. Since
o(é—2) and o(p—vy) are functions in L*(£2,), Lemma 3 proves (i).
Similarly (ii) follows from Lemma, 4.

Lemma 6. For any x and y € 2,, we have

N, 2, 9)— NG, @, 9)=lim [ ;t N1, z, y)dt
el0 €

N, 2, 9)—N_ 4, o, y)=lim gt N, z, y)dt.
el 0 -1

Proof. These are direct consequences of Lemma 5 and the
Hadamard variational formula.

Lemma 7. For any x e Q_,, we have

f_l _dd?Nt(z, 2, x)] dw< co.

Proof. As a consequence of (1.4), we have the Hadamard varia-
tional inequality (d/dt)N,(2, z, €)>0 for any x € 2_; and £+0. On the
other hand, we have
td

lim N, x, ©)dt=N,(2, 2, x) — N2, x, x)

el0 B dt
lim (% N, 2, )dt=N,Q, z, 2)— N _Q, z, 2).
el0 -1 dt

Lemma 7 follows from these.

Proof of Theorem. From (1.4), we have Hadamard’s variational
inequality :
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2Nz <[ NGz | [ ENG 0, ]
w0l N G o | G v ]
for t+0. Thus for any ¢>0, we have

[ diNt(z, z, y)‘ dt

U 4N, z, x)dt] U A, 9, y)dt]m.

This and Lemma 7 prove that
[l NG, @, )| dt<co.
0

dt
I l——N‘(Z z, y)ldt<oo.

These prove (1.6). (1.6) and Lemma 6 prove (1.7). The theorem has
been proved.

Similarly, we have
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