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106. On Lévy’s Downcrossing Theorem

By Yuji KASAHARA
Department of Mathematics, Kyoto University

(Communicated by Kodsaku Yosipa, M. J. A., Dec. 12, 1980)

Let {X,,t=0} be a one-dimensional standard Brownian motion
starting at 0. For ¢>0 and £>0, put /(=0 =0, (=) =inf {s>0,;
| X, |=¢}, 0p.(=0ct)=Inf {s>7,;|X,|=0} n=0,1,2,--.) and d.(?)
=max {#;o,<t}. Thus d,(¢) is the number of times that the reflected
Brownian motion | X,| crosses down from ¢ to 0 by time ¢.

Lévy’s downcrossing theorem.

(1) P(lim cd, (=1, th):l
el0
where U(t) is the local time of X(t) at 0, i.e.,
(2) i) =lim -1 j leny(X)ds  a.s.
e10 2e Jo

(For the original version of this theorem, see p. 48 of [4] or [1], [7].)
The aim of this article is to prove a central limit theorem;
Theorem. D-valued processes1/4/ ¢ -(ed,(t) —U({)) converge in low

to BA®)) as ¢| 0, where B(-) is a Brownian motion independent of

I(+) (B,=0).

This is a natural assertion because d,(I-'(t)) is Poisson distributed
with mean tc~* (see D. Williams [7]). However, the difficulty is that
the independence of B and I does not seem to be trivial from this kind
of argument. Therefore we will use another approach based on the
following lemma due to D. Stroock*.

Lemma 1. Let

02: Z l[amtn)(t) Sgn (Xt)]'(—a,c)(Xt)’
then,

(3)

ed,(t)—l(t)——J: gdX.|<e  as.

Since the proof is not published yet, we will prove it for the con-

venience of the reader. By the generalized It6’s formula (Tanaka’s
formula),

5=IXrn|-|X0nI
=f" sgn (X )dX,+1U(z,)—Ue,)

=j"”“a:dX,+z(am>—l<on>.

*  Private communication.
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Combining this with
13
0 =
1o+| eax,=x{|

we have the assertion.
Remark. We can prove (1) using the previous lemma. Since
[6;1<1._.,.,(X), it is easy to see
(4) lim ‘0;”dX,,=O a.s. Wwhere ¢,=n"2
0

n—>co

Tn+1AL

02dXs+l(an+,/\t)—l(an/\t)}

on/\t

Therefore, lim, ..., ¢,d, ()=I(f) a.s. Since d,(f) is monotonic in ¢, it is
not difficult to complete the proof of (1).

We return to the proof of Theorem. Thanks to Lemma 1, it
suffices to show that the continuous martingales

1 [
Mi=— L X,

converge in law to B(l(t)) as e—0.

Lemma 2. There exist constants ¢, and C,, n=1,2,.-.. such
that

E[(M;— M) 1< ¢, EI(M () —<{MH(s)"]
=C.t—9", t=s=0.
Proof. The first inequality is well known (see [3]). To see the
second inequality, notice that

BN ®) — @ 1=E| (L [ 0rau)]

éE[<“1; Jt 1(—5,:)(Xu)du)n] .

Since X, is a Brownian motion, we easily have the asgertion by a direct

computation.
Lemma 3. Forall n=1,2, ..., and t>0,
(5) ligl E[(M>@®)—1U®)*"1=0
(6) ligl E[(M:, XH@®)"]1=0.
Proof. By Itd’s formula,
£=X,— X,
—2 j X, qu+j"‘ du
—2 j |Xu[0;qu+rm 16 du.
Therefore,
(1) od, (t)—2 J “1X,165dX,— j ‘ (0‘)2dul§e2.
0 0

Combining (7) and (3), we have
i1 2 t 1 t

(8) jZ(t)+f gax,—2 j ]Xulﬁ;qu——J (0;)2du‘§23.
0 £ 0 £ 0

Here notice that
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1641<1,..,(X) and %-lXu0LI§1<_.,.>(Xu).

Therefore, the 2n'* moments of the second and the third terms of (8)
are of order " (see Lemma 2). Thus we have (5). (6) can be proved in
a similar (but easier) way.

We are now ready to prove the theorem. Let P* denote the prob-
ability measure on 2=C([0, c0)—R?) induced by (X,, M, I(t)). We
will use (x(%), y(t), 2(t)) to express elements of 2. By Lemma 2,
{P*:e>0} is precompact. Let P* be any limit point of {P‘:¢>0}.
Then it is clear that z(¢) and y(t) are martingales relative to (P*,&,;
t>0) where {¢} is the natural increasing family of ¢-fields. Of course,
clearly, x(?) is an & ,-Brownian motion with local time 2(f). By Lemma
3, we also see that (x)(¢)==z(t), {x, ¥)(t)=0, P*-a.s. Therefore, by the
Knight representation theorem for continuous martingales (see [5])
there exists a two-dimensional Brownian motion (B,(t), B,(t)) such that
2(t)=B,() and y(t)=B.,((¥y),)=B,(2(t)), a.s. Since P* is unique, we
have the theorem by a standard argument.

Remark. (a) In a similar way, we can prove the following for
the number of downcrossings of X, (instead of | X,|) (cf. [2]). Fora<0
<b, let D, ,(t) denote the number of times that X, crosses down from
b to a by time ¢. Then,

(1y lim2®,—a,)D,,,®O=Ut a.s., if > (b,—a,)<co.

n—co

(9) V(,—a,)/2003+a}) 2(b,—a,)D,, ) —Ut)}
converge in law to B(l(¢)) as a,, b,—0, where I(¢) and B(t) are the same
as in Theorem.

(b) As a corollary of Papanicolaou-Stroock-Varadhan’s theorem
([6]), we can also prove a central limit theorem for (2):

(10) «/1? {2% j’ 1(_6,3)(X3)ds—l(t)}

converge in law to
v2/3B((t),  ase—0.
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