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1. Introduction. Let X bea complex manifold and Y an analytic
subset of X. Let Q25 be the complex of sheaves of germs of holomorphic
forms on X and £ the formal completion of 25 along Y (cf. [4]).
Then the formal analytic Poincaré lemma says that 9 gives a resolu-
tion of C, with respect to the natural augmentation C’Y—->[§'X. This
was first shown by Hartshorne [4] and Sasakura [5] independently.
Actually, Sasakura obtained a stronger result using his theory of
stratifying analytic sets and of cohomology with growth conditions [5].
In the present note we shall give a simple alternative proof of his
result using resolution, based on the idea of Bloom (cf. [2, 3.1]).

2. Statement of the result. Let U=X—-Y and j: U—X be the
inclusion. Let I be any coherent sheaf of ideals of O, with supp O, /I
=Y where supp denotes the support. We call an open subset V of X
good with respect to Y if V is Stein, its closure V is a Stein compact,
and if the restriction map j*: H(V,C)—H Y NV, C) are isomorphic
for all 7, or equivalently, Hy(V—-V NY,C)=0 for all 7, where ¥ is the
family of supports consisting of closed subsets of V which are contained
inV—VNY. In what follows for a rational number » we denote by
[r] the largest integer which is not greater than r, and then we write
[r], =max ([r], 0).

Theorem. Let V be an open subset of X which is good with re-
spect to Y. Then there exist rational numbers c,, ¢, with ¢,>0 such
that if we put c(m)=I[c;m—c,], for any integer m, then the following
hold true: 1) For every p>0 and ¢ € I'(V, I™Q%) with do=0 we can find
a e l(V,I*™05Y) such that p=dy. 2) Suppose further that V is
contractible. Then for every p=0 and every ¢e I'(V,2%) with do
e I'(V,I"Q%Y) we can find a e I'(V, 25" such that o—dyel'(V,
Ie™ ey where Q3'=Cy and d: 23'—0y is the natural inclusion.

The formal Poincaré analytic lemma mentioned above follows
from 2) of the above theorem together with the following:

Remark. For each y €Y there exists a fundamental system {V}
of contractible open neighborhoods V of ¥ in X which are good with
respect to Y. In fact, since the problem is local, we may assume that
X=C":=C"(z,, ---,2,) where n=dim X. Letr=>7",|2,fand D,={r<e}
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for ¢>0. Then it suffices to take {V}={D]}..,, for some sufficiently
small ¢,>0. Indeed, then we have only to see that D,NY, ¢<s, is
contractible, which is a consequence of Thom-Mather’s theory (cf. [3,
Chap. II, Theorem 5.4]).

3. Proof of Theorem. 2) follows from 1) as follows. Put
p=dp. Then dy=0 so that by 1) there exists a &eI'(V,I*™Q2%) such
that y=dg. Then d(p—&)=0, so we get a € I'(V, 2°") such that di
=¢—& since V is Stein and contractible. Hence o—dy=£eI'(V,
IcmQry,

Next we show 1). Take by Hironaka a proper bimeromorphic
morphism f: XX with X nonsingular and ¥ :=f-(Y) a divisor with
only normal crossings in X, such that Slz-¢: X-V-X-Y is iso-
morphic. We may further assume that on the closure V of V, f is
obtained by blowing up of a coherent analytic sheaf I’ of ideals of O,
with supp O, /I'=Y.

We first consider the case where I=1’ and show that in this case
1) is true with ¢,;=1. We put I=7"'(I") (=I'Og). Then I is f-very
ample on V. Let ¢=¢f. Then ¢eI'(V,I™0%) and dp=0, where V
=f"(V). Then the main point of our proof is to show the following :
(+) There exists an integer m, such that once m=>m,, then we can
always find a € I'(V, I"-?0%") such that dj=g.

First we define a subcomplex K;, of 2% by

K,=I""'Qp+ImdI N Q5.

Then we put 2%,,=02%/K,,, where 17(,,,) is the complex subspace of X
defined by the ideal /™*!. We then have the obvious exact sequence of
complexes

(1) 0—K;,—23%—2%n,—0.

On the other hand, by Reiffen (cf. [2, 3.1]), for every m=1 (1) is a re-
solution of the following exact sequence of sheaves of C-vector spaces
( 2 ) O—éfICﬁ—)CX—)sz—)O

with respect to the natural augmentation from (2) to (1), where U=X
—V and j: U—X is the inclusion. From (1) and (2) we get on V
= (V) the following commutative diagram of hypercohomology exact
sequences

—> HWV,K,) —>HV,Q)—>HW,2%.,) —>

T | I

—HYV -V NY,0)— H(V,C)—H(I NV, 00—
where the vertical arrows are isomorphic and ¥'= f-%(¥). Since V is
good, HL(V-VNY,C)=HYV—-YNV,C)=0. Now we consider for
each m the spectral sequence of hypercohomology associated to the
complex K;,

Ep«m)=HYV,Kp)=>H"(V,K;,)=Hr«(V -V NY,C)=0.
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Corresponding to the natural inclusions K;, S K;,.,, m=>m/, we have the
natural maps of the spectral sequences
a?(m, m') : E2q(m)—E2q(m’), mz=m'.
Then we shall prove the following: () If m is sufficiently large, then
a2i(m, m—1) are zero maps for all r=1 and ¢=1. In fact, by the de-
finition of K2 we obtain the exact sequence
0—Im*1Q% KKz | [™*10%—0.
Since I is f-very ample on V and V is Stein, using Leray spectral se-
quence for f we have H(V, I"+*'0%)=0 for all sufficiently large m and
q=1. Hence we get the natural isomorphisms
H(V,Kp)=H'(V, K5 /I"*'0%)
for sufficiently large m and ¢=1. On the other hand, since the com-
positions K2 ,—~K2—Kz/I™*10% are zero maps, from the above iso-
morphisms we get that the natural maps H«(V, Kz, )—~H'V,K2) are
all zero maps. Namely a?%m,m—1) are zero maps and a fortiori
a?%(m, m—1) are zero maps for r=2 for sufficiently large m and all
q=1, which proves (”). Using (’) we next prove the following :

Assertion. af’(m, m—p+1): E2%(m)->E?(m—p +1) are zero
maps for all sufficiently large m and all p>0.

Proof. It is enough to prove the following assertion (x) by de-
scending induction on i : () a?%(m, m—p+i—1) : EP(m)—E?*(m—(p—1
+1)) are zero maps for p=1=2. (The case =2 corresponds to the
above assertion.) We shall denote by d?%(m): E?(m)—E2+52-1+1(1p)
the differentials of the spectral sequences. Suppose first that ¢=p.
Then we have the natural isomorphisms E2°(m)= - - - = E%(m) and the
natural inclusion EZ°(m)S H"(V, K;). Since H*(V,K;)=0 as was
remarked above, we have E2°(m)=0. Hence (x) is true in this case.
Next suppose that (x) is true for some 7>2, so that we have a?°(m, m
-—-p—*—’i—l)Ef’o(?’l’L):O, i'en

a?t(m, m—p+i—1DEP(m)
cdzi i (m—p+i—D)E T (m—p +1—1))
From this it follows that
a?h(m, m—p+i—2)E?5(m)
=al(m—p+i—1, m—p-+i—2)ap(m, m—p+i—1DEP(m)
Sar(m—p+i—1, m—p+i—2)(d={ " *(m—p+i—1)
(B?zi*0 Y (m—p+1i—1)))
=i m—p+i—2) (=i (m—p+i—1, m—p+i—2)
(B0 (m—p+1i—1)))
=0,
where the last equality comes from (/) since i—2>0 and m—p+i—1
is sufficiently large if m is. This proves (x) for ¢—1 and hence com-
pletes the inductive proof of (x), and hence of the assertion also.
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The above assertion is equivalent to saying that the natural maps
a,(m): HIT'(V,K;)—~H?T'(V,K;,_,.) induced by the inclusions K,
CK;, _,.: are zero maps for all sufficiently large m and all p>0. Now
coming back to our ¢, let ¢eH”F(I7, K, _) be the class defined by ¢.
Then if m is sufficiently large, a,(m—1)5=0 so that there exists a
Jre rw, K37) such that ¢=dy. On the other hand, since K, _,
CIm-20%, e I'(V, I™2Q%"). This proves (+).

From (+) we shall deduce our conclusion as follows. First note
that for any coherent analytic sheaf F on X there exists an integer
d>0 such that for each k>0 the natural map I*f, (IF)—f (I***F)
is isomorphic. In fact, noting that X =Projan (P, I") over V [1]
this follows from the corresponding algebraic result (cf. EGA III 2.3.2)
by the comparison theorems in Bingener [1]. We apply this to F =04,
0<¢<dim X, and obtain an integer d>0 independent of ¢ such that

S Q) = I f  (I0Q%) SI*f (%) = 1724
and hence I'(V, [4+* WEL(V,I*Q%). Therefore if e I'(V, I™-?-¢QeY)
corresponds to the above y by this inclusion we have p=dy. Thus if
we set ¢;=1 and ¢,=p-+d then 1) is true for all sufficiently large m.
Then taking ¢, larger 1) holds for all m>0.

Next in the general case fix positive integers s and ¢ such that
I'C I’ and I""S1 on V, which is possible by Hilbert zero theorem. Then
by what we have proved above (applied to I’) we see readily that there
exist an integer ¢ and a el'(V,I"Q%") with dy=¢ where »n
=[(m;—c)/t]l,, m;=[m/s]. Sincen=(m/ts)—(c/t)—4, if wesetc,=1/ts
and ¢,=—((¢/)+4), v e I'(V, I*™0% 1), Q.E.D.
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