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By means of the theory of the module of genus, S. Iyanaga and
Herbrand established the general principal ideal theorem in [4], [5]
and [6]. In this paper, we prove the theorem in an improved form by
an investigation of the structure of the idele groups [8].

1. Let k be an algebraic number field, m a divisor of k, which
may contain Archimedian primes, and K the ray class field modulo m
of k. Denote the conductor, the different and the module of genus of
K over k by [/, / and / respectively. Then as divisors of K,
we have

/=/./.
For a prime ideal of K, let e()=e(/) be the order of ramification
o over k, i.e.

*()[(k).O, and *()+(k).O,
and put

K/ "k" e()-l=K/" (")" e()-1.

Our improved orm of the general principal ideal theorem is
Theorem 1. The extension of an ideal a of into K belongs to

the principal ray class modulo if a is relatively prime to m. In
other words,

a.O=A.O
with A e Kx such that

A 1 mod /.
Here O is the maximal order of K.

In [4] and [6], the general principal ideal theorem was proved or
/ in place of/ o Theorem 1. Note that [/ divides m.

2. Let k] and K be the idele groups of k and K respectively,
and, k and K the Archimedian parts of k] and K] respectively. Let
k+ be the connected component o the unity of k, and k the closure
o k. k+ in k. For a prime ideal p o k, we denote the p-adic com-
pletion o k by k, the closure of the maximal order O in k, by 0, and
the unit group of O by 0. For an Archimedian prime p, the com-
pletion o at p is denoted by k,, and the connected component o
the unity of k by k+. For K, for a prime ideal o K, and for an
Archimedian prime of K, we define K+, K#, K, 0, 0, K and
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K/ in the same manner.
For a non-Archimedian prime factor p of m, let w=w(p) be the

exponent of p in m, i.e.
p lm, and p/Xm.

Similarly, for a non-Archimedian prime factor p of the conductor
let u=u(p) be the exponent of p in [/. Then

u()w().
Take a prime ideal of K lying over p, and denote by N the norm
map of K over k. As is well known,

u=u(p) is the smallest integer such that
N(K) 1+ pu. 0.

Since K is the ray class field modulo m of k, we have
( 1 ) k.Y/(K])=k,k, k+

O (l+p’().O).
non-Arch non-Arch

Here N/ is the norm map of K over k. (See, for example, [7, Ch.
4, 7-3].). For a non-Archimedian prime divisor of the module of genus
/, let v=v() be the exponent f in /.

Proposition 1. Let p be a non-Archimedian prime divisor of /.
Then eve,ry prime ideal of K lying over p divides both of / and

/. Moreover, for each i (v()iv()+e()-- 1),
N(I+.0) 1+pu(,). O,.

One can easily derive this proposition from [7, Ch. 5, Th. 2.1, Th. 2.2
and Ch. 2, Th. 7.3].

Remark. For ]=v()+e(),
N(I+.O) 1+ pu(,)+ . 0,.

Therefore this proposition characterizes v()+e()-1 as the maximal
i such that

N(1+.0)=1+p(’). 0.
The integer v() is the smallest among those v for which the higher
ramification group g,, becomes trivial.

Proposition 2. Let p be a non-Archimedian prime divisor of
and a prime ideal of K lying over p.

( ) If p/, then u(p)w(p), and
N(1+.0) 1+p(’). O,

for every i such that
v()+ e(). (w()-u())iv()+e(). (w()-u()+ 1)- 1.

(ii) If p$[/, then e()= 1, and for any i,
N(I+.0) 1+p. 0.

As for (i), one can derive it rom [7, Ch. 5, Th. 2.1] immediately.
p[/, then p is unramified in K over k. Therefore, (ii) is clear.



No. 4] On the. General Principal Ideal Theorem 173

4. For a prime ideal o K, let p= k, and put
x() v()+ e(). (w@)-u()+)-.

Then 0 I-[ (*) is the non-Archimedian part of/ defined in 1.
Let 3 be the Archimedian part of r/.

Theorem 2. Let the notation and the assumptions be as above.
Then naturally considered as a subgroup of K, the idele group k] is
contained in
(*) K I-[ K I-[ K/ I-[ 0 (l+x(*).O).

o ,1’ 10

to prove this theorem.
Proof. Let U be the subgroup of K] defined by (.). It follows

rom (1) in 2 and Proposition 2 that
k. NK/(K) k. NK/(U).

Therefore we have
K] N)(kg U.

Because U is an open subgroup o finite index of K, we also have U
K*. We see easily from the definition that

U U for any a e Gal (K/k).
The theorem now follows from the next proposition, which is proved
in [8] as Theorem 2 by the results of E. Artin [1] and Furtw/ingler [3].

Proposition 3. Let k be an algebraic number field and K a finite
Galois extension of k. If an open subgroup U of K satisfies

( i ) UK,
(ii) U U for any a e Gal (K/k),
(iii) U N}(k9 K],

then we have UDk.
5. Remark. For the ray class field K modulo m of k, fix a non-

Archimedian prime actor p o m, and put w=w(p). Let be a prime
ideal of K lying over p. Then

O k. N/(K]) N,(O)
is the subgroup o O generated by the elements of l+p.O, and all
those (global) units e of k which satisfies

--1 mod p-W.ra.
Thereore if p-. m is suitably chosen or the fixed p, then

N(O) 1+pw 0.
(See Chevalley [2].) I this is the case, then u(p)=w(p)=w, and we
have

e(3)=e(/k)=[O l+p.O,]=(q-1).q-1,
v()=e().(q-1)-l=q-,
v()+e()-l=q-l,

where q=(O,/p.O). (See [7, Ch. 5, Th. 2.1 and Ch. 2, Th. 7.3], or

Well [9, XII-4, Cor. of Prop. 13].)
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