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1. Introduction. In this paper, we improve the theorem of Jech
and Prikry [2] on projections of finitely additive measures. Let N
denote the set of all natural numbers. A (finitely additive) measure
on N is a function x: P(N)—[0, 1] such that p(¢)=0, p(N)=1 and if X
and Y are disjoint subsets of IV, then p(X U Y)=pu(X)+(Y). pisnon-
principal if u(E)=0 for every finite set ECN. Let F:N—N be a
function. If yis a measure on N, then v=F*(y) (the projection of x
by F) is the measure defined by v»(X)=u(F~(X)).

Theorem (Jech and Prikry). There exist o measure pon N and
a function F' : N—N such that

a) F*(@=y,

b) if XSN is such that F* is one-to-one on X, then p(X)=< %

A measure is two-valued if the values is {0,1}. The theorem of
Jech and Prikry contrasts with the following theorem concerning
two-valued measure (Frolik [1] and Rudin [3]):

If pis a two-valued measure and F : N—N is such that F*(w=p,
then F(x)=x on a set of measure 1.

In this paper we prove the following

Theorem. There exist a measure p and o function F:N—N
such that

a) F*(u)=y,

b) if XS N is such that F is one-to-one on X, then w(X)=0.

2. Sketch of the proof. We shall now state two results, to be
proved in the following sections. We shall indicate how Theorem fol-
lows from them.

Proposition 1. For any prime p, there exist a function F,: N
—N and o finitely additive measure 1, such that

D FiGy)=n,

2) if XSN is such that F, is one-to-one on X, then 7,(X)<1/
(p—D.

. . 1;1
Proposition 2. There exists a function fp:NoTth such that

JoFs'=F;'f, where F; and F, are the functions in Proposition 1.
We let F'=F, and 2,(X)=7,(f,(X)) where f,(X)={f,(®)|2e X}.
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Since f, is one-to-one and onto, 1, is a finitely additive measure.

First we prove

3) F*Qp,) =2,

4) if XS N is such that F' is one-to-one on X, then 1,(X)<1/

(p—D.
Since f, is one-to-one and onto, 4) holds by 2) because if F is
one-to-one on X, then F, is one-to-one on f,(X). By 1), for any
XCN, 7,(X)=n,(F;*X)). Therefore 2,(X)=7,(f,(X)) =7,(F3*(/ (X))
=7,([,(F(X))=2,(F~(X)) by Proposition 2. Then 3) follows. Itis
important that in 3) and 4) F' does not depend on p.

Let {a,|n € N} be a bounded sequence of real numbers, and v be a
two-valued measure. Then there exists a unique real number a, which
we denote by a=1im, a,, such that for any ¢>0, v({n||a—a,|<ep)=1.

Let p, be the n-th prime number. By letting x(X)=1im, 1,,(X),
we get a theorem. Because x is obviously a finitely additive measure,
w(X)=1im, 2,,(X)=lim, 2,,(F(X))=p(F (X)) and if F is one-to-one on
X, then p(X)=1lim, 2, (X)<lim, 1/(p,—1)=0.

3. Proof of Proposition 1. Original idea is due to Jech and
Prikry. For each XS N, we define X(n)=“the number of elements of
XN{1,2,8, - -,n} and g(X)=1im, X(n)/n. Obviously y(X)=p(X+1)
and p(EN)=1/k.

Let yn(X)=%7§p’°yo(p"X) and 7,(X) = lim, x,(X). It is easily
k=0

checked that 7, is a finitely additive measure and 7,(X)=7,(X+1).
We will show

5) n,,@X):%%(X).
For each n>1, we have
n n—1
6 1m0 —Pm@X)|=| 1 5 pu@—L 5 pu@X)

=2 |- OIS S,

because p(X)<1 and y(p"X) <p(»"N)=1/p". Applying lim, to 6), we
get 5).

We define F,(m)=Fk where m=pi(kp—j) for some ¢ and 1<j5<p.
For any ¢=0,1,2,... and 7=2,3,4,...,p—1, let S‘={pitkp—NI|k
=1,2,8,---}, Sj=UOS§, Ti={p'(kp—1)|k=1,2,3, - - -}, and T=U0 T,

Define a function G: | S,—-T as G(p*(kp—7)=pi(kp—1).

257<p
Since T°, T°—1, - - -, T°—p+1 are mutually digjoint and their union

is N, ,(T)=1/p. Therefore 728 =9,(T*— (G — 1)) =7,(T)=17,(p*T")
=1/p**'. We show 7,(S)=79,(T)=1/(p—1). For S, T* are mutually
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disjoint and () T*cTcN—{J )8} then 3.1 <y (M <1-(—2)
i=0 j=21i=0 i=0 pt*

X;ZJ —ilﬁ Let p—oo, we have 7,(I=1/(p—1). Similarly 7,(S,)

0P
=1/(p—1.

Remark. 7,(S,)= g;) 7,(SH) and 7,(T) = i 7,(T.
Lemma 1. Let 7 be a finitely additive measure on N and A= CJ A,
=0
(disjoint wunion). If 77(A)=fj 7(4,), then for any XCN, p(XNA)
=0

=2 (XN 4.
Proof. Since A, are mutually disjoint and

U@nac@nde(Jxnaou U 4),
SAXNA)SHEND=TAENA)+ 5 7(4).

By letting n— o0, Lemma 1 follows because i} 7(A,) tends to 0.
1

t=n+

Now we prove
D Fi(p)=n,
We will show 7,(X)=79,(F;(X)) for any XCN. Let A,=T7"

U pL_Jl S7 and Bn=Lnj A,. The sets A, are pairwise disjoint and 5,(4,)
—(p— 1)/, 7 (By=1—1/p"". Tt follows from the definition of F',
that for each ne N, F;'(X)NA,= Iq pY(pX—j7). Consequently, if we
denote a—7,(X), then -

2, (F5(X) N B,) =a(1-—#) and

np(Bn—F,;l(X>>=(1—a>(1- pl )

n+1

Now if n tends to infinity, 7,(F;(X))=a which proves 7).

Next we show

8) if XS NissuchthatF,is one-to-one on X, theny,(X)<1/(p—1).
By Lemma 1 and Remark,

7,(XNS,)= if_’% 7,(X NSH) = io 27X NS+ (=139
= }EO 7(G(X N SE) = io 7(GX NSHNT)=1,(GXNS,).

Let Y=(XNT)U Gl G(XNS,. Since F,is one-to-one on X, XN T and
=2
G(XNS) (7=2,8, ---,p—1) are pairwise disjoint. Then YCT and
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7p(X)=7,(¥)<7,(T)=1/(p—D).

Now by 7) and 8), Proposition 1 follows.

4. Proof of Proposition 2. Let us start with the proof of the
following

Lemma 2. Let N =C) N¢=C)1 M, (disjoint union), for all i and j
i=1 j=
IN,=IM,|, 1e NN M, and for all n,ne \J N, and ne \J M,. Then
i<n

j<n
there exists a function f: N%)N such that f(N,)=M;.,.

Proof. We define f(¢) for ¢ € N, by induction on % such that f is
one-to-one and f(N,)=M,.

We first put f(1)=1 and f to map N, one-to-one onto M,. Then
J(IND=M,,, and f is one-to-one. If we define f(¢) for ie N, (k<n)
such that f(N,)=M,, and f is one-to-oneon (_J N, then f(n)is already

k<n

defined because ne | J N,. We take f(?) for e N, such that f maps

k<n
N, one-to-one onto M,.,,. Then f(N,)=M;y, for k<n and f is one-
to-one on | N;.
ksn

We must prove f is onto. If not, we pick the least x such that
xe N— f(IN). Then for some y<z, xe M,. Since y<z, there is a 2
such that f(»)=vy and therefore xe M,=f(N,). So xe f(IN). This
contradiction proves Lemma 2.

Now we return to the proof of Proposition 2. Let N,=F;(¢) and

M,=F;(). By Lemma 2, there is a function f,: N__>N such that
Fo(F7 @) =F;*(f,(®). So Proposition 2 holds.
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