62. On the Number of Conjugate Classes of Maximal Subgroups in Finite Groups

By Mikio Kano

Department of Mathematics, Akashi Technological College

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1979)

1. Introduction. M. Numata [1] proved that the nilpotent length of a finite solvable group is at most one plus the number of conjugate classes of the non-normal maximal subgroups.

In this paper we shall prove the following two theorems. One of them partially extends Numata's result.

Theorem 1. Suppose every non-normal maximal subgroup of a finite group G has the same order. Then G is solvable and the nilpotent length of G is at most two.

Theorem 2. The number of conjugate classes of maximal subgroups of a finite non-abelian simple group is at least three.

Alternating group A_5 has just three conjugate classes of maximal subgroups of it. So the number three in Theorem 2 is best possible. An example related to Theorem 2 is found in the paper [2] due to Goldschmidt, which gives a group-theoretic proof of Burnside's theorem concerning the solvability of groups of order p^aq^b for odd primes p, q. In the paper it is shown that if G is a minimal counter example, then G is simple and the number of conjugate classes of maximal subgroups of G is two. Hence the proof may also be completed by Theorem 2.

2. Proof of the theorems. Let G be a permutation group on Ω , denoted by G^{ρ} , and H be a subgroup of G. We denote by I(H) a set of the points of Ω left fixed by H. We need the following well-known lemma, which is proved by using Witt's lemma [3, P 20], and Lemma 6 of [4].

Lemma. Let G be a transitive permutation group on Ω and p be a prime. Suppose P is a p-subgroup of G of maximal order which fixes at least two points. Then $N_G(P)$ is transitive on I(P).

Proof of Theorem 1. We may suppose that there exists a nonnormal maximal subgroup H in G. Let p be a prime dividing |G:H|and let P be a Sylow p-subgroup of G. If $G \ge N_G(P)$, then there exists a maximal subgroup L such the $L \ge N_G(P)$. Since $L \ge N_G(P)$, we obtain $L=N_G(L)$ and so L is a non-normal maximal subgroup of G. Hence |L|=|H|, contrary to our choice of p. Consequently $G \triangleright P$. Let $\overline{L}=L/P$ be any maximal subgroup of $\overline{G}=G/P$. Since p does not divide |G:L|, L is a normal subgroup of G and $\overline{G} \triangleright \overline{L}$. Hence \overline{G} is nilpotent and the theorem is proved.

Proof of Theorem 2. Assume the theorem is false for a simple group G. By Theorem 1, G possesses two conjugate classes of maximal subgroups. We denote them by $\Gamma = \{L^x | x \in G\}$ and $\Omega = \{M^x | x \in G\}$ = $\{M = M_1, M_2, \dots, M_m\}$. Let $|\Gamma| = |G| : L| = l$, then it is immediate that l and m are relatively prime. We assume that l > m.

Since G^{ϱ} is not a Frobenius group, we may assume that $M_1 \cap M_2$, which is the stabilizer of M_1 and M_2 , is not trivial. Let p be any prime dividing $|M_1 \cap M_2|$ and let P be a p-subgroup of G^{ϱ} of maximal order fixing at least two points. We may assume that $P \leq M_1$. By lemma $N_G(P)$ is transitive on I(P) and so $N_G(P)$ fixes no points of Ω . Thus $N_G(P)$ is not contained in M^x for every $x \in G$, and then $N_G(P) \leq L^x$ for some $x \in G$. Then it follows that $L^x \cap M_1 \geq P$ and so $|L^x \cap M_1| = |L \cap M_1|$ is divided by |P|. On the other hand the order of a Sylow p-subgroup of $M_1 \cap M_2$ is not greater than |P|. Thus $|L \cap M_1|$ is divided $|M_1 \cap M_2|$. Since l and m are relatively prime, $G = LM_1$ and $|M_1: L \cap M_1| = l$. Now $|M_1| = l|L: M_1| = |M_1: M_1 \cap M_2| |M_1 \cap M_2|$ and $|M_1 \cap M_2|$ divides $|L: M_1|$. Therefore l divides $|M_1: M_1 \cap M_2|$. Since l > m, we have $|M_1: M_1 \cap M_2|$ > m. This implies that the length of the orbit of M_1^{ϱ} containing M_2 is at least m+1, contrary to $m = |\Omega|$.

References

- M. Numata: On the π-nilpotent length of π-solvable groups. Osaka J. Math., 8, 447-451 (1971).
- [2] D. M. Goldschmidt: A group theoretic proof of the p^aq^b theorem for odd primes. Math. Z., 113, 337-375 (1970).
- [3] H. Wielandt: Finite Permutation Groups. Academic Press (1964).
- [4] D. Livingston and A. Wagner: Transitivity of finite permutation groups on unordered sets. Math. Z., 90, 393-403 (1965).