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16. Generalized Multiple Wiener Integrals

By Takeyuki HIDA
Department of Mathematics, Nagoya. University

(Communicated by K.Ssaku YOSIDA, M. J. A., March 13, 1978)

1. Introduction. The analysis of nonlinear functionals of
Brownian motion (B($)), which we call simply Brownian functionals,
can be expressed in terms of white noise {/(t)), B(t)--dB(t)/dt. We
are specifically interested in the so-called causal calculus where the
propagation of time is taken into account. Intuitively speaking,
may be taken to be a coordinate system of the basic space on which
Brownian functionals are defined. At the same time, (/()} could be
thought of as a system of variables of Brownin functionals. With
this system the passage of time, say by h, can be represented explicitly
as (t)-.(t+ h). In order to carry out the causal calculus we have
naturally been led to the concept of generalized Brownian functionals
([3]). There we were inspired by P. L6vy’s work [1] on functional
analysis.

The purpose of this note is to discuss those generalized Brownian
functionals by expressing them as generalized multiple Wiener integrals
with respect to the generalized random measures formed from poly-
nomials in the/(t)’s. There we can see that our expression of gen-
eralized Brownian functionals is most fitting for the causal calculus in
question.

2. Known results. Brownian functionals with finite variance
can be expressed in terms of white noise and realized as members of
(L)=L(q*,/), where q* is the dual space of the Schwartz space q on
R and is the probability distribution on q* of the white noise
{/(t) t e R} having the characteristic functional C()"
( 1 ) C()=exp [-1[[[/2], e , the L(R)-norm.
The Hilbert space (L) admits the Wiener-It6 decomposition

( 2 ) (L) --,
n=0

where J(= is the multiple Wiener integral of degree n.
To visualize those members in (L) we have introduced the trans-

formation ([2]):

( 3 ) (’9)() =.[ exp [i<x, >]9(x)dp(x), e (L2),

where (, stands for the canonical bilinear form that connects q and
q*. The collection ={9;9 e (L)} can be topologized so as to be
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isomorphic to (L9 under the transformation . Indeed, with this
topology turns out to be the reproducing kernel Hilbert space with
reproducing kernel C(-]), ($, ) e 3 .

Now set ()=. Then the decomposition (3) turns into that
of:

(2)’ = =.
=0

The following theorem will play the key role in generalizing the
concept of Brownian functionals.

Theorem 1. (i) For (x) e we have the integral representation

...[
A

where F e L(R) the class of symmetric L(R)-funcions, and he map

0-F e L2(R=), e (=,
is one-to-one.

(ii) Under the relationship established in (i) we have
( 5 ) I111-/! liE I1..

Thus we may say that ( (and hence ) is isomorphic to the

Hilbert space L(R)

( 6 ) (= = L2(R=).
3. Generalizes Brownian functionals. As was explained in 1,

{/(t)} may formally be thought of as a system of variables of Brownian
functionals. It therefore seems to be reasonable to start with poly-
nomials in the B(t)’s. There we must meet again formal expressions
that are hard to be interpreted. However, as soon as we come to the
Hilbert space we can immediately find out a way of extending to
a wider space which involves those functionals of corresponding to
polynomials in the/(t)’s.

Observe the expression (4) and take F to be a member of the
symmetric Sobolev space H-(=+)/(R=) over R= of order --(n+l)/2.
Then, for example, we are given such a functional that

.,
which is an ordinary functionM of , while the corresponding Brownian
functional must be a generalized one which is an integral of polynomials
in B(u)’s of degree n.

Such an observation leads us to establish the following diagram
(cf. (6)).

(8)
under

via (7)
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where the vertical double-headed arrows denote isomorphisms. The
functional given by (7) is ound in -) and it determines an
functional.

4. Generalized random measures. The integral in the ormula
(7) is understood to be an integral over R with respect not to the
Lebesgue measure but to the product I-[ (du), where (du) is such
a measure that

f(u,...,u)du.

While the next formula or a unctional given by the Hermite poly-
nomial with parameter

K(H((x, z}/u 1/zlu))()
in C() I Zzl(ul, ..., u)(ul)...(u)du

(; denotes the indicator function of A), (x, } being a version of zIB(u),
tells us that (du) determines a random measure, denote it by
H((u) 1/du)du, which is the limit of H((x, Zz}/zu; 1/u)u in
as zu-*O. We are now ready to define
( 9 ) M(dt) H(B(t) 1 / dt)dt
and also

[. M(dt) if t,
(10) .Mn(dt)=-Mnl(dt) Mn(dt)=---] are all distinct,j=l

0, otherwise.
These are of course ormal expressions, however they can be defined
rigorously as in [3]. In act, we can prove that the product I-[=.M,(dt)
is a random measure in a generalized sense. We now have

Theorem 2. (i) For F e H+/(R) the integral

= I" .[ F(u, ., u)M(du) M(du), , n=n,(11)
JJR

is defined, and the integral belongs to (-. In addition,
i C() ...F(u,...,u)(u)l...(u)ndu...du(12) (p)()=

I-[ n-----’
holds.

In view o this theorem the product (10) is called a generalized
random measure o degree n, and the integral o the orm (11) is said
to be a generalized multiple Wiener integral. Ater P. L6vy a linear
combination of generalized multiple Wiener integrals o several degrees
is called a normal Brownian functional. The collection of normal
Brownian unctionals is an important class in the space of all generalized
Brownian functionals in the causal calculus as is seen in [4] as well as
in the orthcoming papers by the author.

At the moment, we show that multiplication o generalized random
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measures can be defined only or special cases. Multiplication by
M(dt) is possible as:

Mn(dt) Ml(ds)--Mn(dt). MI(ds) + 6_sM_(dt)== (M .M(ds) I-[ .Mn,(dt)}(13) (O.M,(dt)) Mx(ds) (dt)
For example

f(u)M,(du). g(v)M(dv)-- (f(R)g)(u, v)M,(du) .M(dv) + f(u)g(u)M,_(du),
where (R) denotes the tensor product.
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