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1. By a surface, we shall mean a non-singular algebraic surface
defined over C. For complete surfaces, we have birational invariants
such as geometric genus p,, irregularity ¢ and Kodaira dimension «,
by means of which the birational classification of surfaces has been
discussed.

For open surfaces, in addition to those invariants, we have loga-
rithmic geometric genus 7,, logarihmic irregularity g, and logarithmic
Kodaira dimension %, which are proper birational invariants. For
definition of them, see [2], [3], [5].

A K3 surface S is defined to be a complete surface S with p,(S)=1
and ¢(S)=x(S)=0. Moreover, if S is (relatively) minimal, the canoical
divisor K(S)~0 (which means that K(S) is linearly equivalent to 0).
Now, a logarithmic K3 surface S is defined to be a surface S with
P,(8)=1 and g(S)=#(S)=0. In this note we study the structure of
logarithmic K3 surfaces. Details will appear elsewhere.

2. A pair (S, D) of a complete surface S and a divisor D with nor-
mal crossings is called a d-surface and S=S—D is called the interior of
(S, D). We say that (S, D) is relatively o-mimimal if S—D has no ex-
ceptional curves of the first kind and if D is minimal.

It is obvious that for a given surface S, there exists a d-surface
(S, D) whose interior is S. S may be called a completion of S with ordi-
nary boundary D.

3. Let S be a logarithmic K8 surface and let (S, D) be a d-surface
whose interior is S. Then we have the following cases:

) If p,(S)=1, then S is a K3 surface. We put D,=0 and Dy
=D,

II,) If p,(S)=0 and there is a component C, of D which is a non-
singular elliptic curve, then S is a rational surface and the dual graph
associated with D has no loops. We put D,=C, and D,+Dz=D.

I1,) If p,(S)=0 and each component of D is a rational curve, then
S is a rational surface and the graph of D has one loop. Correspond-
ing to the loop, we have a subboundary D, which is circular (see § 4).
We put D=D_,+Dz. In each case, we call S a logarithmic surface of
type I) or II,) or IL,).
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4. Let (S, D) be a d-surface and Y ;_, C, the irreducible decomposi-
tion of D. We say that D is a circular boundary if r=1and C, is a
rational curve with only one double point, or if r=2 and (C,, C,)=2, or
if r=38 and each C, is P* satisfying that

€, Cp=1 for i—j=-+1 mod 7,

C,, CH=0 for 1—7=0, +1 mod 7.
In general, the configuration of components of D defines a graph I'(D).
The cyclotomic number of I'(D) is indicated by h(I'(D)).

A divisor Y with normal crossings on a surface S is called a curve
of Dynkin type ADE if each component 4J; of Y is a non-singular ra-
tional curve with @2 = —2 and if the graph I'(Y) corresponds to a direct
sum of Dynkin diagrams A4,, D,, E;. In particular, h(I"(Y))=0.

5. Let (S, D) be a d-surface whose interior S is a logarithmic K3
surface.

Theorem 1. If S—D, has no exceptional curves of the first kind,
then K(S)+D,~0.

Theorem 2. If (S, D) is relatively 3-minimal and if S—D , has no
exceptional curves of the first kind, then Dy is 0 or a curve of Dynkin
type ADE. Furthermore, if S is of type II, then Dy is 0 or a curve
of Dynkin type A.

6. In general, let (S, D) be a d-surface and let p ¢ D. Consider a
blowing up 1: S'=Q,(S)—S with center p. Letting D'=27'(D), we
have

K(SH)+D'=2*K(S)+ D)+ 2—vE
where E=2"'(p) and v is the multiplicity of D at p. Hence, if v=2,
we call 1: (8!, DY)—(S, D) a canonical blowing up. We have
K(SHY+D'=1*(K(S)+ D).
If =1, then defining D* by D'=F 4 D*, we obtain
K(SY)+D*=2*K(S)+ D).
We say that (S, D*) (or S*=8'—D*) is a 1/2-point attachment to (S, D)
(or S=S—D).

7. Theorem 3. Let (S,D) be a relatively o-minimal d-surface
such that D is a circular boundary. If #(S—D)=0, then (S, D) is
obtained from (P%* H) by canonical blowing ups and downs and by at-
taching several 1/2-points. Here H is a sum of three lines which have
no common Ppoints.

Theorem 4. Let (S, C) be a relatively o-minimal 3-surface such that
C is an elliptic curve. If #(S—C)=q(S)=0, then (S, C) is obtained
from (P% E), E being a non-singular cubic curve, by canonical blowing
ups and by several 1/2-point attachments and detachments.

8. We recall a result concerning quasi-abelian surfaces [6]. Let
S be a surface with g(S)=2 and #(S)=0. Such a surface is called a
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logarithmic abelian surface. Let (S, D) be a 9-surface whose interior
is S. Then,
I) If p,(S)=1, then S is birationally equivalent to an abelian

surface. Put D,=0and Dz=D.

I) If p,(S)=0 and ¢(S)=1, then S is a ruled surface of genus
1. Let f:S—4 be the Albanese map. Then there is the horizontal
component of D with respect to f, which is defined to be D,. Dpis to
satisfy D=D ,+ Dgy.

IID) If p,(S)=q(S)=0, then S is a rational surface and D consists
of non-singular rational curves with h(I"(D))=1. Define D, to be a
circular subboundary in D and D3 to be a divisor satisfying that D=D
+Dgp.

Theorem 5. If S—D, has no exceptional curves of the first kind,
then K(S)+D,~0. Moreover, suppose that D=D ,+ Dy is minimal.
Then D=D,.

Theorem 6. In general, let S be an algebraic surface. Suppose
that S is measure-hyperbolic. Then #(S)=2 or i(S)= — oo and §(S)=0.
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