31. On the Absolute Nörlund Summability of Orthogonal Series

By Yasuo Okuyama

Faculty of Engineering, Shinshu University, Nagano
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1978)
$\S 1$ Let $\sum a_{n}$ be any given infinite series with s_{n} as its n-th partial sum. If $\left\{p_{n}\right\}$ is a sequence of constants, real or complex, and

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} ; P_{-k}=p_{-k}=0, \quad \text { for } k \geqq 1,
$$

then the Nörlund mean t_{n} of $\sum a_{n}$ is defined by

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}=\frac{1}{P_{n}} \sum_{k=0}^{n} P_{n-k} a_{k}, \quad\left(P_{n} \neq 0\right) \tag{1.1}
\end{equation*}
$$

If the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right| \tag{1.2}
\end{equation*}
$$

converges, then the series $\sum a_{n}$ is said to be absolutely summable (N, p_{n}), or summable $\left|N, p_{n}\right|$.

In the special cases in which $p_{n}=A_{n}^{\alpha-1}=\binom{n+\alpha-1}{\alpha-1}, \alpha>0$ and p_{n} $=1 /(n+1)$, summability $\left|N, p_{n}\right|$ are the same as the summability $|C, \alpha|$ and the absolute harmonic summability, respectively.

Let $\left\{\varphi_{n}(x)\right\}$ be an orthonormal system defined in the interval (a, b). We suppose that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) .
$$

By $E_{n}^{(2)}(f)$, we denote the best approximation to $f(x)$ in the metric of L^{2} by means of polynomials $\sum_{k=0}^{n-1} a_{k} \varphi_{k}(x)$, i.e., $\left\{E_{n}^{(2)}(f)\right\}^{2}=\sum_{k=n}^{\infty}\left|a_{k}\right|^{2}$. We write

$$
\begin{equation*}
W_{k}=\frac{1}{k} \sum_{n=k}^{\infty} \frac{n^{2} p_{n}^{2} p_{n-k}^{2}}{P_{n}^{4}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\Delta \lambda_{n}=\lambda_{n}-\lambda_{n-1} .
$$

A denotes a positive absolute constant that is not always the same.
§2. The purpose of this paper is to give a general theorem on the almost everywhere summability $\left|N, p_{n}\right|$ of orthogonal series and deduce several known and new results from the theorem by the similar method as that used by Ul'yanov [7].

Our theorem reads as follows:
Theorem 1. Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$
is a non-increasing sequence and the series $\sum_{n=1}^{\infty} 1 / n \Omega(n)$ converges. Let $\left\{p_{n}\right\}$ be non-negative and non-increasing. If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega(n) W_{n}$ converges, then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $\left|N, p_{n}\right|$ almost everywhere, where W_{k} is defined by (1.3).

We shall require the following lemmas.
Lemma 1 [1]. If $\left\{t_{n}\right\}$ is defined by (1.1), then

$$
t_{n}-t_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=0}^{n} p_{n-k}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right) a_{k} .
$$

Lemma 2 [6]. If we put $p_{n}=A_{n}^{\alpha-1}$ or $1 /(n+1)$, then we have

$$
W_{k}=\frac{1}{k} \sum_{n=k}^{\infty} \frac{n^{2} p_{n}^{2} p_{n-k}^{2}}{P_{n}^{4}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}=\left\{\begin{array}{lr}
O(1), & \text { for } 1 / 2<\alpha \leqq 1 \\
O(\log k), & \text { for } \alpha=1 / 2 \\
O\left(k^{1-2 \alpha}\right), & \text { for } 0<\alpha<1 / 2 \\
\text { or } & \\
O\left(k(\log k)^{-2}\right), & \text { for } p_{n}=1 /(n+1)
\end{array}\right.
$$

Proof of Theorem 1. By Lemma 1 and Schwarz inequality, we have

$$
\begin{aligned}
& \int_{a}^{b}\left|\Delta t_{n}(x)\right| d x \leqq(b-a)^{1 / 2}\left(\int_{a}^{b}\left|\Delta t_{n}(x)\right|^{2} d x\right)^{1 / 2} \\
& \leqq A \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left|\alpha_{k}\right|^{2}\right\}^{1 / 2} \\
& \leqq A \frac{p_{n}}{P_{n}^{2}}\left\{\sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left|a_{k}\right|^{2}\right\}^{1 / 2} .
\end{aligned}
$$

Hence we have by Schwarz inequality

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{a}^{b}\left|\Delta t_{n}(x)\right| d x \leqq \sum_{n=1}^{\infty}\left\{\frac{p_{n}^{2}}{P_{n}^{4}} \sum_{k=1}^{n} P_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left|a_{k}\right|^{2}\right\}^{1 / 2} \\
&=A \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2} \Omega(n)^{1 / 2}}\left\{\frac{n \Omega(n) p_{n}^{2}}{P_{n}^{4}} \sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left|a_{k}\right|^{2}\right\}^{1 / 2} \\
& \leqq A\left(\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}\right)^{1 / 2}\left\{\sum_{n=1}^{\infty} \frac{n \Omega(n) p_{n}^{2}}{P_{n}^{4}} \sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left|\alpha_{k}\right|^{2}\right\}^{1 / 2} \\
& \leqq A\left\{\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{2} \sum_{n=k}^{\infty} \frac{n \Omega(n) p_{n}^{2} p_{n-k}^{2}}{P_{n}^{4}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\right\}^{1 / 2} \\
& \leqq A\left\{\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{\Omega(k)}\right. \\
&\left.\sum_{n=k}^{\infty} \frac{n^{2} p_{n}^{2} p_{n-k}^{2}}{P_{n}^{4}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\right\}^{1 / 2} \\
& \leqq\left\{\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{2} \Omega(k) W_{k}\right\}<\infty
\end{aligned}
$$

by virtue of the hypotheses of theorem. Thus this completes the proof of our theorem (see [6]).

Now, we consider some applications of our theorem. If we put
$\Omega(n)=\log n(\log \log n)^{1+\varepsilon}(\varepsilon>0)$ in Theorem 1 and use Lemma 2, we have the following theorems.

Theorem 2 [7]. If $1 \geqq \alpha>1 / 2$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} \log n(\log \log n)^{1+\cdot}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem 3 [7]. If $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2}(\log n)^{2}(\log \log n)^{1+\epsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, 1 / 2|$ almost everywhere.

Theorem 4 [7]. If $0<\alpha<1 / 2$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} n^{1-2 \alpha} \log n(\log \log n)^{1+\sigma}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem 5. If $\sum_{n=n_{0}}^{\infty}\left|\alpha_{n}\right|^{2} n(\log n)^{-1}(\log \log n)^{1+\varepsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|N, 1 / n+1|$ almost everywhere.

Next, we suppose that $\Omega(0)=0$ and $W_{0}=0$. Then we obtain

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega(n) W_{n} & =\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \sum_{k=1}^{n} \Delta\left(\Omega(k) W_{k}\right) \\
& =\sum_{k=1}^{\infty} \Delta\left(\Omega(k) W_{k}\right) \sum_{n=k}^{\infty}\left|a_{n}\right|^{2} \tag{2.1}\\
& =\sum_{k=1}^{\infty} \Delta\left(\Omega(k) W_{k}\right)\left\{E_{k}^{(2)}(f)\right\}^{2}
\end{align*}
$$

By Lemma 2, we have

$$
\Delta\left(\Omega(k) W_{k}\right)= \begin{cases}O\left(k^{-1}(\log \log k)^{1+\iota}\right), & \text { for } 1 / 2<\alpha \leqq 1 \tag{2.2}\\ O\left(k^{-1} \log k(\log \log k)^{1+\iota}\right), & \text { for } \alpha=1 / 2, \\ O\left(k^{-2 \alpha} \log k(\log \log k)^{1+c}\right), & \text { for } 0<\alpha<1 / 2 \\ O\left((\log k)^{-1}(\log \log k)^{1+\iota}\right), & \text { for } p_{n}=1 /(n+1)\end{cases}
$$

Hence, by (2.1) and (2.2), we can restate these theorems in the following forms, respectively.

Theorem 6 [7]. If $1 \geqq \alpha>1 / 2$ and $\sum_{n=n_{0}}^{\infty} n^{-1}(\log \log n)^{1+\varepsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem 7 [7]. If $\sum_{n=n_{0}}^{\infty} n^{-1} \log n(\log \log n)^{1+\varepsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, 1 / 2|$ almost everywhere.

Theorem 8 [7]. If $0<\alpha<1 / 2$ and $\sum_{n=n_{0}}^{\infty} n^{-2 \alpha} \log n(\log \log n)^{1+e}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem 9. If $\sum_{n=n_{0}}^{\infty}(\log n)^{-1}(\log \log n)^{1+\varepsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ is summable $|N, 1 / n+1|$ almost everywhere.
§3. Let $f(x) \in L^{2}(0,2 \pi)$ and

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{3.1}
\end{equation*}
$$

Let $\Omega(\delta, f)$ denote one of the following integral moduli :

$$
\begin{aligned}
& \omega^{(2)}(\delta, f)=\sup _{0 \leq t \leq \delta}\left\{\int_{0}^{2 \pi}[f(x+t)-f(x-t)]^{2} d x\right\}^{1 / 2}, \\
& \omega_{2}^{(2)}(\delta, f)=\sup _{0 \leq t \leq \delta}\left\{\int_{0}^{2 \pi}[f(x+2 t)+f(x-2 t)-2 f(x)]^{2} d x\right\}^{1 / 2}, \\
& w^{(2)}(\delta, f)=\left\{\frac{1}{\delta} \int_{0}^{\delta}\left(\int_{0}^{2 \pi}[f(x+t)-f(x-t)]^{2} d x\right) d t\right\}^{1 / 2}, \\
& w_{2}^{(2)}(\delta, f)=\left\{\frac{1}{\delta} \int_{0}^{\delta}\left(\int_{0}^{2 \pi}[f(x+2 t)+f(x-2 t)-2 f(x)]^{2} d x\right) d t\right\}^{1 / 2} .
\end{aligned}
$$

Leindler [4] established the following equivalence theorem for the trigonometric system.

Theorem A. Let $0<\beta \leqq 2$. Let $\lambda(x)(x \geqq 1)$ be a positive monotone function such that

$$
\sum_{k=n}^{\infty} \frac{1}{k^{\beta} \lambda(k)} \leqq A \frac{1}{n^{\beta-1} \lambda(n)}
$$

Then four conditions

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{t^{2} \lambda(1 / t)}\left(\int_{0}^{2 \pi}[f(x+t)-f(x-t)]^{2} d x\right)^{\beta / 2} d t<\infty, \\
\int_{0}^{1} \frac{1}{t^{2} \lambda(1 / t)}\left(\int_{0}^{2 \pi}[f(x+2 t)+f(x-2 t)-2 f(x)]^{2} d x\right)^{\beta / 2} d t<\infty, \\
\sum_{n=1}^{\infty} \frac{1}{\lambda(n)} \Omega\left(\frac{1}{n}, f\right)^{\beta}<\infty
\end{gathered}
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda(n)}\left\{E_{n}^{(2)}(f)\right\}^{\beta}<\infty
$$

are mutually equivalent.
By Theorem A, we can obtain Theorems 10,11, 12 and 13 from Theorems 6,7,8 and 9, respectively.

Theorem 10 [7]. If $1 / 2<\alpha \leqq 1$ and

$$
\omega^{(2)}(\delta, f)=O\left((\log 1 / \delta)^{-1 / 2}(\log \log 1 / \delta)^{-1-\varepsilon}\right),
$$

then the Fourier series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.
Theorem 11 [7]. If $\omega^{(2)}(\delta, f)=O\left((\log 1 / \delta)^{-1}(\log \log 1 / \delta)^{-1-\varepsilon}\right)$, then the Fourier series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $|C, 1 / 2|$ almost everywhere.

Theorem 12 [7]. If $0<\alpha<1 / 2$ and

$$
\omega^{(2)}(\delta, f)=O\left(\delta^{1 / 2-\alpha}(\log 1 / \delta)^{-1}(\log \log 1 / \delta)^{-1-\varepsilon}\right),
$$

then the Fourier series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem 13. If $\omega^{(2)}(\delta, f)=O\left(\delta^{1 / 2}(\log \log 1 / \delta)^{-1-\varnothing}\right)$, then the Fourier series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $|N, 1 / n+1|$ almost everywhere.

We point out that both Theorems 12 and 13 can be also deduced from the theorem due to Lal [2,3], who, however, stated nothing about the facts in the cited papers, but that neither Theorem 10 nor 11 can be induced from his theorem.
§4. Ul'yanov [7] showed that one cannot suppress the number $\varepsilon>0$ in Theorems 10, 11 and 12. In this section, we shall show that the number $\varepsilon>0$ is indispensable in Theorem 13.

The following theorem is due to Tsuchikura and Okuyama [6].
Theorem B. Let $\left\{p_{n}\right\}$ be a positive non-increasing sequence such that for an integer $k_{0}, p_{n-k}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)=O(1)$ for $n>k_{0} \geqq k \geqq 1$.

If the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)\right\}^{1 / 2} \tag{4.1}
\end{equation*}
$$

converges, then almost all series of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \pm\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{4.2}
\end{equation*}
$$

are summable $\left|N, p_{n}\right|$ for almost every x, and if the series (4.1) diverges, then almost all series (4.2) are non-summable $\left|N, p_{n}\right|$ for almost every x on a set of positive measure.

Using this theorem, we can prove the following theorem.
Theorem 14. There exists a function $g(x)$ belonging to $L^{2}(0,2 \pi)$ such that

$$
\begin{equation*}
g(x) \sim \sum_{n=1}^{\infty} c_{n} \cos n x \tag{4.3}
\end{equation*}
$$

and the series (4.3) is non-summable $|N, 1 / n+1|$ for almost every x on a set of positive measure.

Proof. We put $p_{n}=1 /(n+1)$ and

$$
a_{n}=1 / n \log \log n \quad(n=1,2, \cdots)
$$

where we understand a_{n} to be zero if the right side is negative or lose its sense. Then there exists a function $f_{0}(x)$ belonging to $L^{2}(0,2 \pi)$ such that

$$
f_{0}(x) \sim \sum_{n=1}^{\infty} \pm a_{n} \cos n x .
$$

For this function $f_{0}(x)$, we have

$$
\begin{aligned}
E_{n}^{(2)}\left(f_{0}\right) & =\left\{\sum_{k=n}^{\infty} \frac{1}{k^{2}(\log \log k)^{2}}\right\}^{1 / 2} \\
& =O\left(\frac{1}{n^{1 / 2} \log \log n}\right)
\end{aligned}
$$

Therefore, by a theorem of A. F. Timan and M. F. Timan (see [5], 331), we obtain

$$
\omega^{(2)}\left(\frac{1}{n}, f_{0}\right) \leqq \frac{A}{n} \sum_{\nu=0}^{n} E_{\nu}^{(2)}\left(f_{0}\right)=O\left\{\frac{1}{n^{1 / 2} \log \log n}\right\} .
$$

On the other hand, if we put $b_{n}=0(n=1,2, \cdots)$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{k=1}^{n} p_{n-k}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)\right\}^{1 / 2} \\
& \quad \geqq A \sum_{n=1}^{\infty} \frac{1}{n(\log n)^{2}}\left\{\sum_{k=[n / 2]}^{n} \frac{k^{2}(\log n)^{2}}{(n-k+1)^{2}} \frac{1}{k^{2}(\log \log k)^{2}}\right\}^{1 / 2} \\
& \quad \geqq A \sum_{n=1}^{\infty} \frac{1}{n \log n \log \log n}\left\{\sum_{k=1}^{[n / 2]} \frac{1}{k^{2}}\right\}^{1 / 2} \\
& \quad \geqq A \sum_{n=1}^{\infty} \frac{1}{n \log n \log \log n}=\infty .
\end{aligned}
$$

Hence, by Theorem B with a suitable choice of a sequence of signs, putting

$$
c_{n}= \pm a_{n} \quad(n=1,2, \cdots),
$$

we can conclude the existence of the required function $g(x)$.

References

[1] J. Banerji: On the absolute Nörlund summability factors (preprint).
[2] S. N. Lal: On the absolute Nörlund summability of Fourier series. Indian J. Math., 9, 151-161 (1967).
[3] -: Addendum to on the absolute Nörlund summability of Fourier series. Ibid., 10, 167-168 (1968).
[4] L. Leindler: Über Strukturbedingungen für Fourierreihen. Math. Zeitschr., 88, 418-431 (1965).
[5] A. F. Timan: Theory of Approximation of Functions of a Real Variable. Pergamon Press (1963).
[6] T. Tsuchikura and Y. Okuyama: On the absolute Nörlund summability factors of orthogonal series (to appear).
[7] P. L. Ul'yanov: Solved and unsolved problem in the theory of trigonometric and orthogonal series. Uspehi Math. Nauk., 19, 3-69 (1964).

