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1.
tial sum.

P--P0+Pl + +P P_--p_=0,
then the NSrlund mean of a is defined by

(1.1) t---- P,_a,
k=O =0

If the series

Let a be any given infinite series with s as its n-th par-
If {p} is a sequence of constants, real or complex, and

for/c => 1,

(P 4= 0).

(1.3)

A denotes a positive absolute constant that is not always the same.
2. The purpose of this paper is to give a general theorem on

the almost everywhere summability IN, p] of orthogonal series and
deduce several known and new results from the theorem by the similar
method as that used by Ul’yanov [7].

Our theorem reads as follows:
Theorem 1. Let {2(n)) be a positive sequence such that {(n)/n}

write

(1.2) It-t_l
n=l

converges, then the series , a is said to be absolutely summable
(N, p), or summable IN,

In the special cases in which P=A-=(n+-l)--o--1 o>0 and Pn

=l/(n+ 1), summability
and the absolute harmonic summability, respectively.

Let {9(x)} be an orthonormal system defined in the interval (a, b).
We suppose that f(x) belongs to L2(a, b) and

f(x) a(x).
n=O

By E)(f), we denote the best approximation to f(x) in the metric

L by means o polynomials a(x), i.e., (E)(f)}= a]. We
k=0
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is a non-increasing sequence and the series , 1/n,Q(n) converges. Let
n=l

{p} be non-negative and non-increasing. If the series lal 9(n)W

converges., then the orthogonal series a(x) is summable
n-=l

almost everywhere, where W is defined by (1.3).
We shall require the ollowing lemmas.
Lemma 1 [1]. If {t} is defined by (1.1), then

(P P-)in-- tn-- P Pn- a.PnPn- =o Pn
Lemma 2 [6]. I/we put p=A-1 or 1/(n+ 1), then we have

(0(1), for 1/2a1
O(log k), for =1/2

,nn-. O(kl-e"), for=1 v.2 p= p=W== P P= P or
,O(k(log k)-2), for p= 1 / (n + 1).

Proof of Theorem 1. By Lemma 1 and Schwarz inequality, we
have

t(x)] dx(b--a) ]t(x)] dx

pL,
p.-

p. /lal}
Hence we have by Schwarz inequality

1 {n(n)p E P- a=Anl/9(n)l/( P p

by virtue of the hypotheses of theorem. Thus this completes the
proof of our theorem (see [6]).

Now, we consider some applications of our theorem. If we put
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9(n) log n (log log n) /’ (e 0) in Theorem I and use Lemma 2, we have
the following theorems.

Theorem 2 [7]. If 1 >= 1/2 and , I log n (log log n)+’ con-
n0

verges, then the series a(x) is summable C, almost everywhere.

Theorem [7]. I/ [a [ (log n) (log log n)+" converges, then the
n0

series a(x) is summable [C, 1/2[ almost everywhere.

Theorem [7]. If 0a1/2 and a n- log n(log log n)+’
0

converges, then the series a(x) is summable C, almost every-

where.

Theorem 5. If , [al n(log n)- (log log n)/’ converges, then the
t---n0

series ao(x) is summable IN, l/n+ II almost everywhere.

Next, we suppose that 2(0)=0 and W0=0. Then we obtain

lal 9(n)W= la] l(tO(k)W)
n=l n=l lc=l

(2.1) -- A(9(k)W) , la[
l=l, A([2(k)W){E()(f)}.

By Lemma 2, we have
O(k-(log log k)+’),

(2.2) 0(/- log k(log log
for 1/2a1,
for a 1 /2,A(9(k)W)=

O(k-" log k(log log k)+’), for 0a1/2,
O((log k)-(log log k)1+9, for p--1/(n/ 1).

Hence, by (2.1) and (2.2), we can restate these theorems in the follow-
ing orms, respectively.

Theorem 6 [7]. If l>__a>l/2 and , n-l(log log n)+’{E()(f)} con-
t=n0

verges, then the series a(x) is summable C, a] almost everywhere.

Theorem 7 [7]. If , n- log n(log log n)/’{E()(f)} converges,
n=no

then the series an(X) is summable ]C, 1/21 almost everywhere.

Theorem 8 [7]. If 0a<l/2 and , n- log n(log log n)/’{E()(f)}
t----n0

converges, then the series , a(x) is summable C, 1 almost every-

where.
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Theorem 9. If , (log n)-l(log log n)+’{E()(f)} converges, then
-TO

the series , a(x) is summable IN, 1/n+ 11 almost everywhere.. Let f(x) e L(O, 2u) and

(3.1) f(x)ao+= (a cos nx+b sin nx)=o An(x).

Let 9(, f) denote one of the following integral moduli"

w()(, f): sup [f(x + t)-- f(x--t)]dx
0t

(, f) su [Z(+t) +f(z-t)-
0t

Leindler [4] established the ollowing equivalence theorem or the
trigonometric system.

Theorem A. Let 0fl2. Let 2(x)(xl) be a positive monotone
function such that

1 A 1
k2(k) n-2(n)"

Then four conditions

Io 1 (o[f(x + t) f(x t)]dx)/dt(,t2(1/t)

;o l (o[f(x+2t)+f(x 2t)--2f(x)]dx)’/dt(,t(1/t)
1 9( f)( <

=1

{E()(f)} < c

are mutually equivalent.
By Theorem A, we can obtain Theorems 10, 11, 12 and 13 rom

Theorems 6, 7, 8 and 9, respectively.

Theorem 10 [7]. If 1/2 <= 1 and
(, f)--O ((log 1/)-/(log log 1/)--9,

then the Fourier series A,(x) is summable C, a[ almost everywhere.

Theorem 11 [7]. If (, f)=O ((log 1/)-(log log 1/)--9, then

the Fourier series A(x) is summable ]C, 1/2] almost everywhere.
0
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Theorem 12 [7]. If 0<c< 1/2 and
()(/, f)=0 (//z-(log 1 / 3)-(log log 1 //)--*),

then the Fourier series Y, An(x) is summable [C,,[ almost every-
0

where.
Theorem 13. If w(z)(, f)=O (/Z(log log 1/)--’), then the Fourier

series A(x) is summable IN, l/n+ 1 almost everywhere.
0

We point out that both Theorems 12 and 13 can be also deduced
from the theorem due to Lal [2, 3], who, however, stated nothing about
the facts in the cited papers, but that neither Theorem 10 nor 11 can
be induced from his theorem.

4. Ul’yanov [7] showed that one cannot suppress the number
e>0 in Theorems 10, 11 and 12. In this section, we shall show that
the number >0 is indispensable in Theorem 13.

The following theorem is due to Tsuchikura and Okuyama [6].
Theorem B. Let {p} be a positive non-increasing sequence such

that for an integer ko, pn_( P’-=0(1)- for nkokl.

If the series

(4.1) P p_ P (]a]+]b])
converges, then almost all series of

(4.2) (a cos nx+ b sin nx)

are summable [N, Pn] for almost every x, and if the series (4.1) di-
verges, then almost all series (4.2) are non-summable IN, p for almost
every x on a set of positive measure.

Using this theorem, we can prove the ollowing theorem.
There exists a function g(x) belonging to L(O, 2z)

(4.3) g(x) , cn cos nx,

(4.4) (1In, g)--0 (n-(log log n)-)
and the series (4.3) is non-summable IN, 1/n+l] for almost every x on
a set of positive measure.

Proof. We put p-- 1 / (n+ 1) and
a-- 1 /n log log n (n--- 1, 2, )

where we understand a to be zero if the right side is negative or lose
its sense. Then there exists a function fo(X) belonging to L(0, 2) such
that

fo(X) +__ an cos nx.

Theorem 14.
such that
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For this function fo(X), we have
1

( ).0\. n/ log log

Therefore, by a theorem o A. F. Timan and M. F. Timan (see [5], 331),
we obtain

W(2) 1 A E 1,f0 --n =o
()=0

n/loglogn
On the other hand, i we put b,=0 (n=l, 2, ...), we have

1[=I- (1

A
n(log n) /? (n--k+ 1) M(log log k)

1 I 1}/A
n lo n lo lo n , V

: n log n log log n
Hence, by Theorem B with a suitable choice of a sequence of signs,
putting

c=a, (n=1,2, ...),
we can conclude the existence of the required function g(x).
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