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Boundary Value Problem on Symmetric
Homogeneous Spaces

By Toshio OSHIMA*) and Jiro SEKIGUCHI**)

(Communicated by Ksaku YOSII)A, M. J. A., June 14, 1977)

1. Introduction. Any eigenfunction of all invariant differential
operators on a Riemannian symmetric space can be represented by the
Poisson integral of a hyperfunction on its Martin boundary (cf. [2],
[3]). We can also formulate a boundary value problem for a
wider class of (not necessarily Riemannian) symmetric spaces. For
examples: SZ,(n,/)/SO(, n--), 1(n,/)/(I, n--), t(n,/)/GL(n,/).
Our theorem in this paper is a natural generalization of the result in
[2] and [3] under a certain mild condition.

2. Notation. Let G be a connected real semisimple Lie group
with finite cener, K a maximal compact subgroup of G. Let be the
Lie algebra of G, the Lie subalgebra of K in g. Let be the com-
patible Cartan involution of g. Let be a maximal abelian subspace
in 0--(X g; (X)----X), * its dual and * the complexification of *.
Let v be the restricted root system of (g, ) and let us introduce an order
in v. We denote by r--(x,..., ) the se of positive simple roos in
this order. Put g--(X g; [H, X]--(H)X for any H in ) and let us
denote by p one-half of the sum of positive roots. Furthermore, let
G--KA2V be the compatible Iwasawa decomposition, M the centralizer
of in/, M* the normalizer of in K, and m and the Lie algebras
of M and N, respectively. The quotient group W-M*/M is called the
Weyl group.

3. Preliminary results. We will define the symmetric space
G/K where we will investigate simultaneous eigenfunctions of the in-
variant differential operators.

Definition 1. We call he mapping : v_(_l, 1) signature of
roo if the followings are satisfied.

(i) e() (--1, 1 for r.
(ii) e()=e()...e() for ---=xm .
For a given signature e, we can associate an involutive auoo

morphism of g by the following"
Definition 2. We define the involutive automorphism of g so

that the conditions
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(i) 0,(X) ()0(X) for X e (a e X),
(ii) O,(X)=O(X) for X e m+a

hold and call it the -involution of
Put ,={X e ; O,(X)=X}, let K be the analytic subgroup of G

generated by , and put K,=MK,. Furthermore, putM=M* K, and
W,=M/M and let w=e, w2,..., w, be representatives of the quotient
W,W, where r= [W: W,]. We will fix e M* so that w=M for any
weW.

Lemma 3. 1) , + a+ n (direct sum).
2) G =K,,AN (open dense, unique, disjoint).
Remark. 1) The complexifications of and , are isomorphic in

the complexification of .
2) If is the trivial signature, then K, equals K and G/K, is a

Riemannian symmetric space. But G/K, is not necessarily Riemannian
in general.

4. Poisson transorm. Let D(G/K,) (resp. D(G/K)) be the ring
of invariant differential operators on G/K, (resp. G/K).

Lemma 4. D(G/K,)D(G/K).
For a real analytic manifold X, we denote by (X) the space of

hyperfunctions on X (cf. [4]). Put
(G/K (Z)) (u e (G/K,) Du=z(D)u for any D e D(G/K)}

or any algebra homomorphism Z of D(G/K,) into C and put

e e if g=k,an, k e g, a e A, n e N,
[o if g e K,wAN

for any 2 e aS and any g e G (i= 1, ..., r).
Lemma 5. The function e on G is a hyperfunction wih the

meromorphic parameter e a. Its poles are contained in the set

2 e a
(, )

e Z for some e If2 does not belong to the set,

we can take a unique algebra homomorphism of D(G/K,) into C such
that e-+- is in (G/K,;(Z)) for i=l,...,r. Here (.,
denotes he inner produc$ induced by $he Killing form.

Next we define the space of hyperfunction sections on a line bundle
over G/P (P=MAN) for any

(G/P )=(f(g) e (G); f(gman)=e- ,of(g)
for geG, meM, aeA, neN}.

Then a partial Poisson transform of every f(g) in (G/P ) is defined
by

K

with the normalized Haar measure dk on K (i= 1, ..., r). We can prove
that the partial Poisson transform
(G/P ) into (G/K, ()).
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Now we can state our theorem.
Theorem. Assume a in a satisfies the condition

(A) 2(, } e Z for any in X.

Then the Poisson transform,. _(G/P 2)-..(G/K. /(Z))
defined by ,(f, ,fO = ,,f is an onto G-isomorphism.

We will describe the idea of the proof of the theorem. First we
embed the symmetric space G/K. with its Martin boundaries in a com-
pact real analytic manifold. We remark that there are r=[W: W.]
Martin boundaries in the closure of G/K, in this realization. Then it
is an essential fact that the system of differential equations on G/K.

(Z): Du=z(D)u or any D e D(G/K)
has regular singularity along the walls around every Martin boundary
(cL [1]). Using this fact, we can take the boundary values of any
eigenhyperfunction of the invariant differential operators on the sym-
metric space G/K. to its r Martin boundaries. We can prove that the
two mappings, the Poisson transform and taking the boundary values
o the eigenhyperfunctions, are mutually inverse mappings. Hence
we can obtain the result.

This method of the proo is the same as in [2]. The precise argu-
ment will be published elsewhere.
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