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2. Global Solutions of the Boltzmann Equation
in a Bounded Convex Domain

By Yasushi SHIZUTA*®) and Kiyoshi ASANO**)

(Communicated by Kosaku YO0SIDA, M. J.A., March 12, 1977)

1. Introduction. We consider the Boltzmann equation
(1) +Z é‘z —J(F, F),
'i
which describes the change in tlme of the distribution function of the

arguments space x and velocity &. Here J(F', F) is the collision integral
[1]. The equilibrium solution of (1) is F =w, where

o)=——— @ )3,2 exp (—%I&F)-

As we are interested in solutions of (1) which are close to FF=w, we
introduce f(z, &) by

(2) F=w-+o'f.
Then the equation satisfied by f is
(3) %J;—=Bf+/11’(f, .

The explicit form of the operator B is

BF)(x, &= — Ze @8 &) f(@,e)
(4) =7 e

+[ K@ nr@nay,

where v(£), the collision frequency, is a certain unbounded positive
function of & and K(¢&, 5), the collision kernel, is a symmetric function
of £ and 7. The operator 4 is the multiplication operator by »(¢) and
I'(f, ) denotes the quadratic term. Note that J(w, w)=0. We shall
use Grad’s estimates [1], [2] for v(¢), K(&, ») and I'(f, f) in computations.
This means that the potential is a hard potential in the sense of Grad
and that the angular cut-off assumption is made for the differential
cross section. A typical example satisfying these conditions is a gas of
rigid spheres. The initial value problems for the Boltzmann equation
on the torus and on the entire space have been studied earlier in [4]
and [5], respectively. In this note, we treat the initial boundary value
problem for the case of specular reflection boundary condition. Our
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aim is to show the existence of solutions in the large for the initial
data near equilibrium.

2. Decay estimates. Let us consider a bounded convex domain
2 in R® and assume that the boundary 02 is three times continuously
differentiable. In addition, the principal curvatures are assumed to
be positive on d£2. The appropriate function space is S,, «=0, i.e.,
the set of all functions satisfying

(i) f is a continuous function on 2 x R?,

(ii) for (x, &) € 02 X R?,
where 7, denotes the inner normal to 92 at =z,

(iii) sup A +[EM*2 | f (2, §)|—0, as |[§|—co.
On this space we have the norm

IIfHa:S;lfp A+[EP| f(, &)

Taking into account of the specular reflection boundary condition, we
see that the operator B generates a bounded semi-group {V(#)} in
S, for any «=>0. The imaginary axis belongs to the resolvent set of
B except for A=0, which is an isolated eigenvalue of B. The resolvent
(A—B)! has a simple pole at A=0. The residue of the resolvent at
A=0 is a projection operator P of finite rank r, 2<r<5. By using a
theorem of Jorgens and Vidav, we obtain the following estimate.

Theorem 1. For any y>0 small enough, there exists a constant
M>0 depending only on « and y such that
(5) VT —P)ls,-s,=Me™", for t=0.

3. Global solutions. The space X, , is the set of functions of
argument ¢ with values in S, satisfying

(i) f is a continuous function on [0, o),

(i) sup e | S (@), <oo.
X,,, is endowed with the norm

1S lle.=sup € | f D)l

We denote by N, the set of all functions f ¢ S, satisfying Pf=0. This
is equivalent to saying that f € N, if and only if

J‘jﬂst f(.%', §)¢t(x’ &)dwd&:O, =1, 2,1,

where {V;} is a basis of the nullspace of B. Y, denotes the set of all
functions f € X, , taking its values in N,. Now we consider the inte-
gral equation

(6) FO=VE®)s+ j V(t—8)A(f(s), F(s))ds,

which is derived formally from (8) with f(0)=¢. Note that the inte-
gral in the right side of (6) is well defined in S,_;, for any continuous
function f with values f(¢) in S,, a=>1.
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Theorem 2. If y>0 is small enough and a=1, there exists o
positive constant d depending only on a and y such that, for any ¢ € N,
with 4], <d? (6) has a unique solution feY,, with || f|.,<d. The
mapping ¢—f is continuous and indefinitely differentiable. Further-
more, f=f(t,x, &) satisfies

[a—aﬁ > &a—;—]f(t, 2,8)

(7) — (@) fE, @, &) + f K& e, @, dy

+v @IS ®), fFON(x, &),
pointwise on (0, o)X PXR:. Here [a/at+i; £,0/0x;] means the dif-

ferentiation in the direction (1, &, &,, &) for every fixed &.

The proof is based on Theorem 1 and the implicit function theorem.
A similar result has been obtained by Guiraud [3] for the case of pseudo
reflection boundary condition.
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