2. Global Solutions of the Boltzmann Equation in a Bounded Convex Domain

By Yasushi Shizuta*) and Kiyoshi Asano**)

(Communicated by Kôsaku Yosida, M.J.A., March 12, 1977)

1. Introduction. We consider the Boltzmann equation

(1)
$$\frac{\partial F}{\partial t} + \sum_{i=1}^{3} \xi_{i} \frac{\partial F}{\partial x_{i}} = J(F, F),$$

which describes the change in time of the distribution function of the arguments space x and velocity ξ . Here J(F, F) is the collision integral [1]. The equilibrium solution of (1) is $F = \omega$, where

$$\omega(\xi) = \frac{1}{(2\pi)^{3/2}} \exp\left(-\frac{1}{2} |\xi|^2\right).$$

As we are interested in solutions of (1) which are close to $F = \omega$, we introduce $f(x, \xi)$ by

$$(2) F = \omega + \omega^{1/2} f.$$

Then the equation satisfied by f is

(3)
$$\frac{\partial f}{\partial t} = Bf + \Lambda \Gamma(f, f).$$

The explicit form of the operator B is

(4)
$$(Bf)(x,\xi) = -\sum_{i=1}^{3} \xi_{i} \frac{\partial f(x,\xi)}{\partial x_{i}} - \nu(\xi) f(x,\xi)$$

$$+ \int_{\mathbb{R}^{3}} K(\xi,\eta) f(x,\eta) d\eta,$$

where $\nu(\xi)$, the collision frequency, is a certain unbounded positive function of ξ and $K(\xi,\eta)$, the collision kernel, is a symmetric function of ξ and η . The operator Λ is the multiplication operator by $\nu(\xi)$ and $\Gamma(f,f)$ denotes the quadratic term. Note that $J(\omega,\omega)=0$. We shall use Grad's estimates [1], [2] for $\nu(\xi)$, $K(\xi,\eta)$ and $\Gamma(f,f)$ in computations. This means that the potential is a hard potential in the sense of Grad and that the angular cut-off assumption is made for the differential cross section. A typical example satisfying these conditions is a gas of rigid spheres. The initial value problems for the Boltzmann equation on the torus and on the entire space have been studied earlier in [4] and [5], respectively. In this note, we treat the initial boundary value problem for the case of specular reflection boundary condition. Our

^{**} Department of Mathematics, Nara Women's University, Nara 630, Japan.

** Institute of Mathematics, Yoshida College, Kyoto University, Kyoto 606, Japan.

aim is to show the existence of solutions in the large for the initial data near equilibrium.

- 2. Decay estimates. Let us consider a bounded convex domain Ω in R^3 and assume that the boundary $\partial \Omega$ is three times continuously differentiable. In addition, the principal curvatures are assumed to be positive on $\partial \Omega$. The appropriate function space is S_{α} , $\alpha \geq 0$, i.e., the set of all functions satisfying
 - (i) f is a continuous function on $\overline{\Omega} \times R^3$,
 - (ii) for $(x, \xi) \in \partial \Omega \times \mathbb{R}^3$,

$$f(x,\xi)=f(x,\xi-2n_x(\xi\cdot n_x)),$$

where n_x denotes the inner normal to $\partial \Omega$ at x,

(iii)
$$\sup_{x} (1+|\xi|^2)^{\alpha/2} |f(x,\xi)| \rightarrow 0$$
, as $|\xi| \rightarrow \infty$.

On this space we have the norm

$$||f||_{\alpha} = \sup_{x,\xi} (1+|\xi|^2)^{\alpha/2} \cdot |f(x,\xi)|.$$

Taking into account of the specular reflection boundary condition, we see that the operator B generates a bounded semi-group $\{V(t)\}$ in S_{α} for any $\alpha \geq 0$. The imaginary axis belongs to the resolvent set of B except for $\lambda = 0$, which is an isolated eigenvalue of B. The resolvent $(\lambda - B)^{-1}$ has a simple pole at $\lambda = 0$. The residue of the resolvent at $\lambda = 0$ is a projection operator P of finite rank $r, 2 \le r \le 5$. By using a theorem of Jörgens and Vidav, we obtain the following estimate.

Theorem 1. For any $\gamma > 0$ small enough, there exists a constant M>0 depending only on α and γ such that

$$(5) ||V(t)(I-P)||_{S_{\alpha}\to S_{\alpha}} \leq Me^{-rt}, for t \geq 0.$$

- 3. Global solutions. The space $X_{\alpha,r}$ is the set of functions of argument t with values in S_{α} satisfying
 - (i) f is a continuous function on $[0, \infty)$,
 - $\sup e^{rt} \|f(t)\|_{\alpha} < \infty.$

 $X_{\alpha,\gamma}$ is endowed with the norm

$$||f||_{\alpha,\eta} = \sup_{t} e^{\eta t} ||f(t)||_{\alpha}.$$

We denote by N_{α} the set of all functions $f \in S_{\alpha}$ satisfying Pf = 0. is equivalent to saying that $f \in N_{\alpha}$ if and only if

$$\iint_{\mathcal{Q}\times\mathbb{R}^3} f(x,\xi)\psi_i(x,\xi)dxd\xi = 0, \qquad i=1,2,\cdots,r,$$

 $\iint_{g_{\times R^3}} f(x,\xi) \psi_i(x,\xi) dx d\xi = 0, \qquad i = 1,2,\cdots,r,$ where $\{\psi_i\}$ is a basis of the nullspace of B. $Y_{\alpha,\tau}$ denotes the set of all functions $f \in X_{\alpha,r}$ taking its values in N_{α} . Now we consider the integral equation

(6)
$$f(t) = V(t)\phi + \int_0^t V(t-s)\Lambda\Gamma(f(s), f(s))ds,$$

which is derived formally from (3) with $f(0) = \phi$. Note that the integral in the right side of (6) is well defined in $S_{\alpha-1}$ for any continuous function f with values f(t) in S_{α} , $\alpha \geq 1$.

Theorem 2. If $\gamma > 0$ is small enough and $\alpha \ge 1$, there exists a positive constant d depending only on α and γ such that, for any $\phi \in N_{\alpha}$ with $\|\phi\|_{\alpha} \le d^2$, (6) has a unique solution $f \in Y_{\alpha,\gamma}$ with $\|f\|_{\alpha,\gamma} \le d$. The mapping $\phi \to f$ is continuous and indefinitely differentiable. Furthermore, $f = f(t, x, \xi)$ satisfies

(7)
$$\begin{bmatrix} \frac{\partial}{\partial t} + \sum_{i=1}^{3} \xi_{i} \frac{\partial}{\partial x_{i}} \end{bmatrix} f(t, x, \xi)$$

$$= -\nu(\xi) f(t, x, \xi) + \int K(\xi, \eta) f(t, x, \eta) d\eta$$

$$+ \nu(\xi) (\Gamma(f(t), f(t)))(x, \xi),$$

pointwise on $(0, \infty) \times \Omega \times R^3$. Here $[\partial/\partial t + \sum_{i=1}^3 \xi_i \partial/\partial x_i]$ means the differentiation in the direction $(1, \xi_1, \xi_2, \xi_3)$ for every fixed ξ .

The proof is based on Theorem 1 and the implicit function theorem. A similar result has been obtained by Guiraud [3] for the case of pseudo reflection boundary condition.

References

- [1] H. Grad: Asymptotic theory of the Boltzmann equation. II. Rarefied Gas Dynamics, 1 (J. A. Laurmann, Ed.), Academic Press, New York (1963).
- [2] —: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation. Proceedings of Symposia in Applied Mathematics, 17, Amer. Math. Soc., Providence (1965).
- [3] J. P. Guiraud: An H theorem for a gas of rigid spheres in a bounded domain. Théories Cinétiques Classiques et Relativistes, C. N. R. S., Paris (1975).
- [4] Y. Shizuta: On the classical solutions of the Boltzmann equation (to appear in Comm. Pure Appl. Math.).
- [5] —: The existence and approach to equilibrium of classical solutions of the Boltzmann equation (to appear in Comm. Math. Phys.).