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58. Studies on Holonomic Quantum Fields. V

By Mikio SATO, Tetsuji MiwaA, and Michio JIMBO
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kosaku YosipaA, M. J. A., Dec. 12, 1977)

This is a continuation of the series of our notes [1].

Here we shall give a summary of the theory of Clifford group. As
for details see [2]. We remark that we have changed the definition of
T, and nr (¢9) which was given in [1].

1. Norms and rotations. Let W be an N dimensional vector
space over C. Weset W*=Hom. (W, C)={y|y: W—C, w—p(w)}. Let
AW) =Y., A«(W) denote the exterior algebra over W. We denote by
0 the linear homomorphism é: W*—End, (4(W)), »—4d, which satisfies
0,(1)=0 and J,(wa) =y(w)a—wd,(a) for we W and a e A(W). Let r be

an element of Hom, (W, W*) such that =+’ is invertible. An
def

orthogonal structure is introduced to W by the inner product <w, w">
=c(w)(W)=c(w)(w). We denote by A(W) the Clifford algebra over the
orthogonal space W thus obtained.

There exists a unique linear isomorphism

1.1) Nr,: AW)—AW), a—Nr, (a)
which satisfies Nr, (1)=1 and
1.2) Nr, (wa)=w Nr, (@) 4+ d,..,(Nr, (@)).

We call Nr, (o) the x-norm of a. The constant term of Nr, (a) is called
the r-expectation value and is denoted by <{a),.

There exists a unique automorphism a+~—se(a) (resp. anti-automor-
phism a—a*) of A(W) characterized by e(w)= —w (resp. w*=w) for
weW. We denote by G(W) the Clifford group {g € A(W)|3g~' ¢ A(W),
gWe(9)'=W}. We denote by T the group homomorphism T : G(W)
—O(W), g—T, defined by T, (w)=gwe(g)~' for we W. Then we have
the following exact sequence.

(1.3) 1—>GL (1, 0O-%> ) —L>0(W)—>1.
A group homomorphism nr: G(W)—GL (1, C), g—nr (9) is defined by
nr (g) =ge(g)*, which is called the spinorial norm of g.

In what follows we shall adopt the following identifications:
Hom, (W, QcW,, C)=W¥QR@ W¥=Hom (W,, W¥).

If g € G(W), we have
(1.4) {gyi=nr (g9) det ((«T,+‘r)c™").
If {g>,#0, we have

(1.5) Nr, (9)=<9). exp (p,/2)



220 M. SATo, T. Miwa, and M. JIMBO [Vol. 53(A),

with p,=(T,— DT, +%)"' e L2W)CWRW =Hom (W*, W). If (g,
=0, then Ker (¢ 'x+ T, 'k)#0. Take a generic element w of W and
set ¢’=wg. Then the following conditions i) and ii) for w,e W are
equivalent;

) "+ Tycw)(w)=0,

i) {(z“‘x-}- T, ') (w,) =0,

{w, ¢ r(w)>=0.

Moreover we have Nr, (9)=w, Nr, (¢°), where w, is any element of W
satisfying (.t + T 'e)(w,) =0 and {w, c"#(w,))=1. Thus the norm
of g is of the following form.
1.6) Nr, (9)=cw,- - -w; exp (o,/2)
where ce C, >k, Cw,=Ker (¢7"x+ Ty 'x) and p, € A44W).

Conversely, assume that g is given by (1.6). We set Nr, (g9,
=cexp (o,/2), W,=2>%., Cw, and denote by ¢, the natural inclusion
i,: W,—W. Then we have

a.m nr (9,)=<{g.; det (1+‘xp,).

Now assume that nr (9,)#0. Then g, belongs to G(W) and we have
(1.8) Ty =A—p)"A+ p,%).

Moreover we have

1.9 nr (9) =(det,,,... wp %,(1—£p,)"'xi,) nr (9,).

Here det,,.... uy 4,1 —£p,)"'xi, means the determinant of the matrix
representation of ‘(1 —«xp,)~'xi, with respect to the basis (w,, - -+, wy)

and its dual basis. If nr (¢)#0, g belongs to G(W) and we have
1.10) T,=T, —A—pm) " [, —rp,) 'ki,] (1 —rp,) e.

2. The closure of G(W). Let G* denote the subset {cw,- - -w,
exp (p/2)|ceC, wy, - -+, w, e W and pe AA(W)} of A(W), and set G
=Y, G* We also set A* (W)= P A¥(W), A‘(W):k(—B A¥(W) and

k: even : odd
G==GN A=*(W).

G isclosed in A(W). P(G*)=(G*—{0})/GL (1, C) is a non-singular
projective variety in P(4*(W)) of (1/2)N(N—1) dimensions. {P(G*)}
(k=0,1, - .., N) gives a stratification of P(G). P(G*) is a fiber bundle
over My, ,(C) with the fiber AX(C¥~*). Here we denote by My .(C) the
Grassmann manifold consisting of k¥ dimensional subspaces in C¥.

In particular, the -closure G(W) of G(W) coincides with
Nr;* ({ew, - -w, exp (p/2)|ce C, w,, - -+, wy € W, pe AAW) and k=0,1,
.-+, N}.

Let x, denote the linear homomorphism k,: W—W* such that

2e(w)(W)=<{w,w’>. We denote by ¢ the projection A(W) N—r'-°>/1(W)

inclusion Nr;t

— @, L7y gy L AW)—=>A(W). For an element
a € A(W) we define
2.1) a/@) =32, (1+ 1) NP1~ ) (a).
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If g € G(W), 0,(9) belongs to G(W). If g e G(W), we have

(2.2) ur (¢,(9)) det T,=nr (9) det (¢ + T,).

0,(9) belongs to G(W) if and only if det 1+ T,t)#0, in which case we
have

2.3) T,o=T,+/QA+T,b).
Note that setting t=1 we have
2.4) (trace g)*det T,=nr (9) det (14T ).

We adopt the normalization of trace in A(W) so that trace 1=2%/%,

There is a one to one correspondence between « satisfying «(w)(w’)
+ e(w)(w)=<{w, w”) and g € G(W) satisfying trace g=1. In fact, the
correspondence is given by <a),=trace ga.

3. Transformation law and product. Take a basis (v, - -+, vy)
of W and its dual basis (v¥, - .-, v¥) of W*. We denote by K and J the
matrix ({v,0,)),,,-1,....w a0d ({V,, V,))4sc1,...,w» Tespectively. The matrix
representations of x and ¢ with respect to the above basis read ‘K and
J, respectively.

Let gecG(W) be given by Nr,(9)=cw,-  -w;exp (o/2). Set

Ci1 v Cxn
r=| : : | where w,=33Y,v,¢,,, and set R=(R,),,-1,....y Where

Cin* " C,N
=% ..R,vv, Let e, denote the N component column vector
(Bu)umtyene e

If we write Nr,(@)=2%_01/m! 2% . nci @u(ths = s )V * Vps
the coefficient g, (s, - - -, pn) i given by

‘e —R 1\/e
pm(ﬂly"',#m)szaﬁ:ian( ‘r)(—-l )( r)
(

—(—1)m+®22 Pfaffian

e
3.1

tr
1
-1 R

} /Pfafﬁan( 1 1)

—r
where e=(€,,, * * *» €,,)-
Now let » and « be such that r+%k=«"+%'=¢ and let K and
K’ be the corresponding matrices, respectively. We set Nr, (9,
=cexp (p/2). Then we have
g e =<9, (det 1 —(K’'—K)R))"*

3.2 _ —(K'-K) 1 1
=<g,), Pfaffian ( 1 R) /Pfaffian (_1 )

If <g9,>..#0, we have

3.3 Nr.. (9) =<9 exp (o'/2)

where o'=>",_, R,v,v, with R"'=R(1—(K'—K)R)™'. Moreover if we
write Nr, (9)=2"n-o1/m! 20 . pme1 0ttty =+ 5 )V * * Vs
the coefficient g,(¢;, « - -, p) is given by
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P;n(/lv tey /.tm)=(_)<m+k)/z<g>‘

te
t

(3.4

Pfﬂ"‘x[
X Plaftfian “K—-K 1

—e
l —r -1 R
Next we shall give formulas for products of elements in G(W). If
we W and Nr, (9)=cw,- - -w, exp (p/2), we have

/Pfafﬁan( . 1).

Nr, (wg)=c(ﬁ (=)W, s Wy WW W gy - - Wy,
8.5) J=1

+ w, - - -wk) exp (o/2)

where @ =(1—pr)(w).

Let W® (y=1, ..., n) be copies of W. Let 4 denote an nxn sym-
metric matrix (1,,),,,-1,...,, With 2,,=1(@=1, ...,n). Let W(4) denote
the vector space @7, W* equipped with the inner product {(w®, - - -,

w™), (WD, o, W)y, =31 A, w®, w1 det 40, W(4) is an

orthogonal space. Let , denote an element of Hom, (W(A), W(A)*)
given by

£ (WP, « o wMN(W' D, e, W) =300 0 A k(W) (W),

Let g® be an element of G(W®)C G(W(A)) given by Nr, (9*)=c»w

- WGy exp (p©/2), with p®» =377, RYvPv”. We set Nr, (g{)

=c“ exp (p*/2). Let c¢{” denote the column vector (¢, - - -, ¢{y) where

oty
wP=3"_ v®e®,, and letr be an Nn X k matrix - ,
C{") . c(
where k——Z” k». Let (0,,:--+,Dy, denote the basis (v{®, . ,v}&,
oo ) and let é,, - - -, éy, denote the Nn component column

1 0 0
0 1 0
vectors, 0 , 0 , 1 , ete., respectively. Let R and A(4) denote an
[0 0 0
Nn x Nn skew-symmetric matrix
R(]) 0 XIZK AR zan
. —ZgltK 0
) and : - K , respectively. Then
R™ ’ . Anon
2K oo —2 K0
we have

<GP+ 9D =<9, - 9", (det A1 —A(DR))”

3.6) ={g®>,- - -{g{>, Pfaffian ( A(lA) 1) /Pfaffian ( 1 1).

If g - - g{™>,,#0, we have
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3.7 Nr., (9"« - - g{") =g’ - - 9{">., exp (o(4)[2)

where po()=3"_; R(4),9,0, with R()=R(1—AR)™'. If we write
Nr,,, (gm .o .g(n))___zxgo 1/m1 Zi‘\f:’»mmmﬂ Pm(/ln cee, ﬂm)f)m. . 01“, the co-
efficient p,(y, - -+, #n) is given by

( ‘ te
6,\
3-8) m gty M) =(— (m+k)/2 [¢))] o (n) .
( ol ) =(—) IO RERC L) A 1
—r| =1 R

where e=(e,,, -+, e,,). If{g®...g™> 0, we have
pm(ﬂl, ) ﬂm)=<gu)' . _g(n)>m
3.9 « Pfaffian (‘e )(——R(I—A(./I)R)‘l A—-RA()! )(e )
\N—A—-AUDR)' A—AUMDR)AU) r

4. The extended Clifford group. Since we have not expounded
this subject in [2], here we shall explain it in detail.

Let us consider the orthogonal space CEW equipped with the in-
ner product <{c+w, ¢/+w) = —{(c+ w)(c +w') + (¢’ +w)e(c +w)}
=—2¢c/ +<{w,w’>. Let G.,(W) denote the extended Clifford group
{ge AW)|3(9)!, g(CEW)e(g)'=CDW}. We denote by T, the linear
transformation of COW induced by g, T,: c+w—g(c+w)e(9)™'. c+w
€ CA®W belongs to G, (W) if and only if —c?+w?+0, and we have
4.1) T, +w)= —A(c’——w') +{(—2cc’ —<w, W) [ (— S+ wHHe+w).

If we denote by T.,, the reflection in C®W with respect to the
hyperplane {¢' +w’ € COW |{c+w, ¢’+w">=0}, then (4.1) reads
4.2) Torw=—Tesnoe=—c0T¢_yu.
This implies that any element of G, (W) is of the form (¢,+w))---
(cp+wy) withe;+w; € (C+ W) NGy (W).  The following exact sequence
is valid
4.3) 1-GL 1, C)—G.p (W)—SO (CEW)—1.

Let W, d——;wao@W be an orthogonal space, where w, satisfies the

following: wj=—1, (w, w,y=0 for any we W. The theory of the
extended Clifford group is reduced to that of G* (W) ={g € G(W.,,)|(9)
=g}. Firstly Fegw: COW oWy, c+w—cw,+w is an isomorphism.
We also denote by F g, the isomorphism A(W)—A+*(W.), a*+a”
—a*+wea~. Note that Fegu(c+w)=F  m(c+ww, We have
F 1w (e(@)*) = e(F 4o1,(@))* and nr (g) = ge(@)* = nr (F4,(9)) for g

€ G, (W). Moreover we have for g € G, (W)

4.4) FC@W oT,= TFA(W)(U) ° Fceaw’
and the exact sequence (4.3) isomorphically is transformed into
4.5) 1-GL A, C)-»G* (W) —SO0 (W,,)—1.

Let & be an element of Hom (W, W*), and define k.., € Hom¢ (W,
W oi®) by <ww”), ., =<ww”y,, wwy),,, =0 for w, w’ € W. If we denote by
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F o, the isomorphism A(W)—A*(W,y), a* +a —a* +w,a~, then we have
4.6) Fyw)yoNr,=Nr,  oF .

(4.4) and (4.6) provide us with a means to compute the norm of an ele-
ment of G.. (W) and the rotation it induces in C@W from each other.
In particular, the closure G..(W) coincides with Nr,™* ({cw,- - -w,
-exp (p/24+w)|[ce C,w,y, -+ -, wy, we W, pe LAW)).
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