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The Paley.Wiener Type Theorem for Finite
Covering Groups of SU (1, 1)

By Takaaki NOMURA
Faculty of Science, Kyoto University

(Communicated by K6saku YOSIDA, M. Z.A., Nov. 12, 1977)

An n-fold covering group G of SU(1, 1) is realized as G={(,,, e C, I’[1, (o e R/2nzZ} with the multiplication" (-, (o)(,’, o’)= (,", "),
where "=(e-" + ’)(1 +7e-’)-, and

w" w + w’ + (2i)- log (1 + ’e-’)(1 +’e’)- (mod 2n),
and we take the principal branch of logarithm. Put u=(0,--0/2),
at=(th(t/2),0). Then each element g eG can be expressed as g

UatU, (0 <4nz, t 0, 0g <2).
1. Let dz()be the ordinary normalized Haar measure on the

unit circle T in C and put =L(T;d()). For any integer k with
--n +1k n and s e C, we define operators U(g, s)(g e G) by

U(g,s)f()=e-2[X+?] ]2)x/2+s -2f(1- (1--[ [1+?]- e
where 2=/2, -=(r, ), T and f . Then U(, s) is
srongly continuous bounded representation o G or any fixed s C.
We put %({)={-v (p Z). Clearly {%;p Z} orms a C.O.N.S. in

Le a(s)(-- + 1 E E, p Z) be a rational unetion defined by

(s) - 1 s)F(p++2+=F(+2+s)F( +2--s) F(p++2-- 1 s) -.
We can define for Re s0 a bounded operator A(s) on by A(s)e;
=(s)e.

Lemma 1.

A(s)U(g, s)=U(g, -s)A(s) (g e G, Re s20).
Let ] Cev and ? _y C%. Then we have

(Lemma Z. i U ., 2+ ]-- -iveriet (s= +, ]= 1,

, ...).
Using Lemma 2, we can eonsrue oher representations V(

of G, which are unitary under certain inner roduet and irreducible
(discrete series, except for (e, )=(--, 1)).. PU (, 8)=(U(, 8)eq, %). Using Lemma 1, we have for
ny e C, (, --) A,q() q(g, ), where Aq()=()/().
matrix elements v.(g, ) of V( ) are given as follows" for "p, q>]_
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when --- /" or "p, q<_ --] when ----", v (g, ])= - *’u
--), where

w (])= + 2(/+ 2) + 1
0,-- + 1 0t,-- + 2(] + 2)

For the sake of convenience, we put ’’w (])=0 for any other triplet in
the above definition.. Let r be a Frchet space of functions f on G such that
f(uatu,) =0 for t T, which is topologized as usual. Let be a closed
subspace of r consisting of functions f such that f(ug)-e/f(g).
Notice that u is a generator f the center of G.

Lemma . T=+.
The "Fourier transform" of f e is the operator-valued function

(s)=.[ f(g)U(g, s)dg (s e C). Let N be the set of all positive integers

and put, according as ken or k=n respectively,

] e N with p]q

{ 1

g;q={]; ] e NU{0} with
u{; ] e u{0} with q---l<p}.

Let be the totality of bounded oerator-valued entire functions
ff() on C which satisfy the following"

) for every non-negative integer r, there exists a constant
such that ()C(l+l)-er

(ii) (ff(--)eq, %)=Aq@)(()eq, %) (, q Z);
(iii) ((8)eq, e)=0 for all
(iv) for every quintet of non-negative integers -(, b,

define I as below. hen I<"
I1-- sup su (l+ll)(l+lql)[(l+l) I(()e, %)1

(( 1) )]
Theorem. Let toologie bg me o the amilg o emi-

The the Fourier tralorm " f(.)=[f()U(,o

gie toologieel iomorphim o oto .
4. Outline of the proof of Theorem. We deeomose f

into functions of differen "K-type" for K={o ;0 R}. Le, be
the closed subspaee of functions h such that
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( 1 ) h(ugu,)=exp (i(p / 2))h(g) exp (i(q /)).
Lemma 4. Let f be a C-function on G such that f(ufg)

----et/nf(g). Then f can be decomposed as

f(g)-- ,,qezfq(g) (pointwise absolute convergence),
where fq satisfies (1).

In view of Lemma 4, we first investigate the case f e q,r sepa-

rately. This turns out to study .[ f(g)Uq(g, s)dg. The case 0,r is the

most important, and the other cases can be reduced to this case in a
similar way as in Part II of [1]. For the case of _q)00,r, we improve the
method in Part I of [1], by giving an exact estimate of the growth of
matrix elements at infinity. Once the Paley-Wiener type theorem for
_q) is established, our theorem follows by summing it up over p, q.pq,T

The details will be published elsewhere.
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