52. The Paley-Wiener Type Theorem for Finite Covering Groups of SU(1, 1)

By Takaaki Nomura

Faculty of Science, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

An *n*-fold covering group G of SU(1,1) is realized as $G = \{(\gamma, \omega); \gamma \in C, |\gamma| \le 1, \omega \in R/2n\pi Z\}$ with the multiplication: $(\gamma, \omega)(\gamma', \omega') = (\gamma'', \omega'')$, where $\gamma'' = (\gamma e^{-2i\omega'} + \gamma')(1 + \gamma \bar{\gamma}' e^{-2i\omega'})^{-1}$, and

 $\omega'' \equiv \omega + \omega' + (2i)^{-1} \log (1 + \gamma \bar{\gamma}' e^{-2i\omega'}) (1 + \bar{\gamma} \gamma' e^{2i\omega'})^{-1}$ (mod $2n\pi$), and we take the principal branch of logarithm. Put $u_{\theta} = (0, -\theta/2)$, $a_t = (\text{th } (t/2), 0)$. Then each element $g \in G$ can be expressed as $g = u_{\omega} a_t u_{\psi}$ ($0 \leq \varphi \leq 4n\pi$, $t \geq 0$, $0 \leq \psi \leq 2\pi$).

§ 1. Let $d\mu(\zeta)$ be the ordinary normalized Haar measure on the unit circle T in C and put $\mathfrak{S}=L^2(T;d\mu(\zeta))$. For any integer k with $-n+1\leq k\leq n$ and $s\in C$, we define operators $U^k(g,s)(g\in G)$ by

$$U^{k}(g,s)f(\zeta) = e^{-2i\omega\lambda_{k}} \left[\frac{1+\bar{\gamma}\zeta}{1+\gamma\bar{\zeta}} \right]^{\lambda_{k}} (1-|\gamma|^{2})^{1/2+s} |1+\bar{\gamma}\zeta|^{-1-2s} f\left(e^{2i\omega}\zeta \frac{1+\gamma\bar{\zeta}}{1+\bar{\gamma}\zeta}\right),$$

where $\lambda_k = k/2n$, $g^{-1} = (\gamma, \omega)$, $\zeta \in T$ and $f \in \mathfrak{F}$. Then $g \mapsto U^k(g, s)$ is a strongly continuous bounded representation of G for any fixed $s \in C$. We put $e_p(\zeta) = \zeta^{-p}$ $(p \in Z)$. Clearly $\{e_p; p \in Z\}$ forms a C.O.N.S. in \mathfrak{F} .

Let $\alpha_p^k(s)(-n+1 \le k \le n, p \in \mathbb{Z})$ be a rational function defined by $\alpha_p^k(s)$

$$= \Gamma\Big(\frac{1}{2} + \lambda_k + s\Big)\Gamma\Big(\frac{1}{2} + \lambda_k - s\Big)^{-1}\Gamma\Big(p + \frac{1}{2} + \lambda_k - s\Big)\Gamma\Big(p + \frac{1}{2} + \lambda_k + s\Big)^{-1}.$$

We can define for Re $s \ge 0$ a bounded operator $A^k(s)$ on \mathfrak{F} by $A^k(s)e_p = \alpha_p^k(s)e_p$.

Lemma 1.

$$\begin{array}{ll} A^k(s)U^k(g,s)=U^k(g,-s)A^k(s) & (g\in G,\,\operatorname{Re} s\geq 0).\\ \text{Let } \mathfrak{F}_j^+=\sum_{p\geq j}^\oplus Ce_p \text{ and } \mathfrak{F}_j^-=\sum_{p\leq -j}^\oplus Ce_p. & \text{Then we have} \end{array}$$

Lemma 2.
$$\mathfrak{F}_{j}^{\epsilon}$$
 is $U^{k}\Big(\cdot$, $\epsilon\lambda_{k}+j-rac{1}{2}\Big)$ -invariant $(\epsilon=+$, $-$ and $j=1$, $2,\cdots)$.

Using Lemma 2, we can construct other representations $V^{\pm}(\cdot, j)$ of G, which are unitary under certain inner product and irreducible (discrete series, except for $(\varepsilon, j) = (-, 1)$).

§ 2. Put $u_{pq}^k(g,s) = (U^k(g,s)e_q,e_p)$. Using Lemma 1, we have for any $s \in C$, $u_{pq}^k(g,-s) = A_{pq}^k(s)u_{pq}^k(g,s)$, where $A_{pq}^k(s) = \alpha_p^k(s)/\alpha_q^k(s)$. The matrix elements $v_{pq}^{k,\pm}(g,j)$ of $V^{\pm}(\cdot,j)$ are given as follows: for " $p,q \ge j$ "

when $\varepsilon = +$ " or " $p, q \le -j$ when $\varepsilon = -$ ", $v_{pq}^{k,\epsilon}(g,j) = \omega_{pq}^{k,\epsilon}(j)u_{pq}^{k}\left(g, \varepsilon \lambda_{k} + j - \frac{1}{2}\right)$, where

$$\omega_{pq}^{k,\epsilon}(j) = \prod_{0 \leq l \leq \epsilon q-j-1} \left[\frac{l+2(j+\epsilon \lambda_k)}{l+1} \right]^{1/2} \cdot \prod_{0 \leq l \leq \epsilon p-j-1} \left[\frac{l+1}{l+2(j+\epsilon \lambda_k)} \right]^{1/2}.$$

For the sake of convenience, we put $\omega_{pq}^{k,*}(j) = 0$ for any other triplet in the above definition.

§ 3. Let \mathcal{D}_T be a Fréchet space of functions f on G such that $f(u_{\varphi}a_tu_{\psi})=0$ for $t\geq T$, which is topologized as usual. Let \mathcal{D}_T^k be a closed subspace of \mathcal{D}_T consisting of functions f such that $f(u_{2\pi}g)=e^{ik\pi/n}f(g)$. Notice that $u_{2\pi}$ is a generator of the center of G.

Lemma 3. $\mathcal{D}_T = \sum_{-n+1 \le k \le n}^{\oplus} \mathcal{D}_T^k$.

The "Fourier transform" of $f \in \mathcal{D}_T^k$ is the operator-valued function $\mathcal{G}(s) = \int f(g) U^k(g, s) dg \ (s \in C)$. Let N be the set of all positive integers and put, according as $k \neq n$ or k = n respectively,

$$egin{aligned} N_{pq}^k = & \left\{ \lambda_k + j - rac{1}{2} \; ; \; j \in N \; ext{with} \; p < j \leq q
ight\} \ & \cup \left\{ -\lambda_k + j - rac{1}{2} \; ; \; j \in N \; ext{with} \; q \leq -j < p
ight\}, \ N_{pq}^n = & \{ j \; ; \; j \in N \cup \{0\} \; ext{with} \; p < j \leq q \} \ & \cup \{ j \; ; \; j \in N \cup \{0\} \; ext{with} \; q \leq -j - 1 < p \}. \end{aligned}$$

Let \mathcal{H}_T^k be the totality of bounded operator-valued entire functions $\mathcal{F}(s)$ on C which satisfy the following:

- (i) for every non-negative integer r, there exists a constant C_r such that $\|\mathcal{F}(s)\| \le C_r (1+|s|)^{-r} e^{T|\operatorname{Re} s|}$;
 - (ii) $(\mathcal{F}(-s)e_q, e_p) = \Lambda_{pq}^k(s)(\mathcal{F}(s)e_q, e_p) \ (p, q \in \mathbf{Z});$
 - (iii) $(\mathcal{F}(s)e_q, e_p) = 0$ for all $s \in N_{pq}^k$;
- (iv) for every quintet β of non-negative integers $\beta = (a, b, c, r, M)$, define $|\mathcal{F}|_{\beta}$ as below. Then $|\mathcal{F}|_{\beta} < \infty$:

$$\begin{split} |\mathcal{F}|_{\beta} &= \sup_{p,q \in \mathbf{Z}; j \in \mathbf{N}} \sup_{|\operatorname{Re} s| \leq M} (1 + |p|)^a (1 + |q|)^b \bigg[(1 + |s|)^r \left| (\mathcal{F}(s)e_q, e_p) \right| \\ &+ j^c \sum_{\epsilon = +, -} \omega_{pq}^{k,\epsilon}(j) \left| \left(\mathcal{F} \left(\epsilon \lambda_k + j - \frac{1}{2} \right) e_q, e_p \right) \right| \bigg]. \end{split}$$

Theorem. Let us topologize \mathcal{H}_T^k by means of the family of seminorms $|\mathcal{F}|_{\beta}$. Then the Fourier transform $\mathcal{T}\colon f\mapsto \mathcal{F}(\cdot)=\int f(g)U^k(g,\cdot)dg$ gives a topological isomorphism of \mathcal{D}_T^k onto \mathcal{H}_T^k .

§ 4. Outline of the proof of Theorem. We decompose $f \in \mathcal{D}_T^k$ into functions of different "K-type" for $K = \{u_\theta : \theta \in R\}$. Let $\mathcal{D}_{pq,T}^k$ be the closed subspace of functions h such that

(1) $h(u_{\alpha}gu_{\psi}) = \exp(i(p+\lambda_k)\varphi)h(g) \exp(i(q+\lambda_k)\psi).$

Lemma 4. Let f be a C^{∞} -function on G such that $f(u_{2\pi}g) = e^{ik\pi/n}f(g)$. Then f can be decomposed as

 $f(g) = \sum_{p,q \in \mathbb{Z}} f_{pq}(g)$ (pointwise absolute convergence), where f_{pq} satisfies (1).

In view of Lemma 4, we first investigate the case $f \in \mathcal{D}_{pq,T}^k$ separately. This turns out to study $\int f(g)u_{pq}^k(g,s)dg$. The case $\mathcal{D}_{00,T}^k$ is the most important, and the other cases can be reduced to this case in a similar way as in Part II of [1]. For the case of $\mathcal{D}_{00,T}^k$, we improve the method in Part I of [1], by giving an exact estimate of the growth of matrix elements at infinity. Once the Paley-Wiener type theorem for $\mathcal{D}_{pq,T}^k$ is established, our theorem follows by summing it up over p,q.

The details will be published elsewhere.

References

- [1] Ehrenpreis, L., and Mautner, F. I.: Some properties of the Fourier transform on semi-simple Lie groups. I, II. Ann. of Math., 61, 406-439 (1955); Trans. Amer. Math. Soc., 84, 1-55 (1957).
- [2] Pukanszky, L.: The Plancherel formula for the universal covering group of SL(R,2). Math. Ann., 156, 96-143 (1964).
- [3] Sally, P. J., Jr.: Intertwining operators and the representations of SL (2, R). J. Funct. Anal., 6, 441-453 (1970).