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Three.Dimensional Dirichlet Problem for the Helmholtz
Equation or an Open Boundary

By Yoshio HAYASHI
College of Science and Engineering, Nihon University

(Communicated by Ksaku YOSIDA, M.J.A., Oct. 12, 1977)

1. Let us mean by an open boundary a union of a finite number
of simple, smooth, bounded, simply or multiply connected, and two-
sided open surfaces in R, each of which being bounded by a union of
piecewise smooth, simple and closed contours of finite length. It is
the purpose of this paper to publish the rsum of the theory of the
Dirichlet problem for the Helmholtz equation and for an open boundary
which the author has established recently.

In the previous papers [1, 2], the author completed the theory of
the two-dimensional Dirichlet problem for an open boundary composed
of a union of simple and smooth arcs in a plane. In [1], he depended
on a theory of a singular integral equation, whose approach was dif-
ficult to extend to apply to the three-dimensional case. However, the
series expansion approach taken in [2] was studied carefully so that it
can be extended to apply to the three-dimensional problems. The ex-
tension will be described in the present paper.

Since the space does not allow a detailed description, only the main
results will be given, and the full length paper is expected to appear
in some periodical soon.

2. Let S be the above mentioned union of open surfaces, 3S be
it’s periphery, and set S=S-3S. Let us denote points in R by x, y,
etc., the distance between x and y by d(x, y), and the distance between
x and 3S by d(x, 3S). Suppose that S(p) and S*(p), where p is a positive
constant, are defined by S*(p)={x;xeS, d(x, 3S)p} and S(p)--S
-S*(p), respectively. Assume that the unit vector normal to S is given
on S. With regards to the directions of the normal, each side of S
is called the positive or negative side of it, respectively. If a function
f(x) assumes a definite limit as x e R3--S) tends to a point x0 on So
from the positive (negative) side of S, it is said to be continuous on S
from the positive (negative) side of it, and the limiting value is denoted
by f/(x)(f-(x)). Let C(S), L(S) and L2(S) be, as usual, the spaces of
functions which are continuous on S, integrable on S, and square inte-
grable on S, respectively. Suppose that T(S) is the set of all functions
belonging to L(S) C(S(p)) for any p>0. Our problem, which will be
called Problem D for the sake of brevity, is to find a function u(x)
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(6)

where

such that u(x) is twice continuously differentiable in R--S, that u(x)
and it’s first order derivatives are continuous on S from the positive
as well as negative sides of it, and that it satisfies the following con-
ditions
( 1 ) u(x) + ku(x) O, x e R-S,
where is the three-dimensional Laplace’s operator, and k is a complex-
valued constant such that Im k =< 0
(2) u(x)=+/-(x), xeS,
where ,+/- are continuous functions given on S;

(3) lim) u(x) + iku(x) dS=O,
R

where S(R) is a sphere of radius R and an arbitrarily fixed center; and
finally

(4) lim,0 s**(o-s {/ On(X)on +lu(x)l}dS=O,
where S**(p) is defined as follows. In a plane perpendicular to S at
a regular point x on 3S, we draw a circle K o radius p and center x.
S**(p) is the union of suraces which K generates when x moves along
3S. 3/3n stands for the differentiation in the direction, of the normal
of a surface.

(4) is the simplest edge condition (condition of finite energy)
which makes the solution unique. However, it is noted [1], that there
exist infinitely many edge conditions each of which makes the corre-
sponding solution unique. Moreover, a problem with another edge
condition is reduced easily to the present one with condition (4).

To begin with, with help o Green’s second identity, we can prove
Theorem 1. A solution of Problem D, if exists, is necessarily rep-

resented as

( 5 ) u(x)---f (x, y)r(y)dS--Uo(X), x e R--S,
Js

where we have set (x, y)-e-(,)/4d(x, y), yo(X)-_(x)--y/(x), and

Uo(X) -----.[_ {(x, y) /n(y)}. yo(y)dS.

In (5), r(y) e T(S), and it should satisfy the following integral equation

of Fredholm of the first kind,

r--[ 4x(x, y)r(y)dS g(x), x e S,
Js

g(x) -{,_(x) + ,+(x)} + Uo(X).

Theorem 2. Conversely, if functions ’o(X) and g(x) are given
arbitrarily, and if r(x) e T(S) is found so as to satisfy (6), then, u(x)
defined by (5) in terms of is the solution of Problem D satisfying all
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of the conditions (1)-(4).
These theorems prove Problem D to be equivalent to that of solving

for the integral equation (6).
On applying Green’s first identity in the domain D(R) bounded by

S(R) and S, a solution u of Problem D is proved to satisfy
Lemma 1.

(7)
--2 Im [ks {r-()-+ r/(3-) /} dS]

where- denotes the complex conjugate. As a consequence of Theorem
2 and Lemma 1, we have

Theorem :. r--0 is equivalent to --0.
This proves the uniqueness o the solution of (6), and hence, of

Problem D as well. is an additive operator mapping T(S) into C(S).
(Actually, the range R() is proved to be C(S)). The inverse operator- is certified to exist by Theorem 3, and is proved to be "continuous"
in the sense of the ollowing theorem.

Theorem 4. For arbitrary0 and pO, there exists aO such
that ]lgllc()=sup [g(x)] implies ]]v]lv((,))--sup

This theorem is proved by Theorem 2 and Lemma 1.
Let {n} be a complete system of functions in L2(S), u(x) be defined

by n, and U(S) be the linear space generated by {u}. Then, with
helps of Hahn-Banach’s extension theorem and Riesz’s theorem, we
can prove

Theorem 5. U(S) is dense in C(S).
By virtue of this theorem, there exist a sequence {g}, where g(x)--= cu(x) and c’s are constants, which converges to g(x) uniformly

on S. This implies that, by Theorem 4, r(x) = Cn(X) converges
to a function r(x) uniformly on S(p) for any p0. As a consequence,
we have

Theorem 5. For a given continuous function g(x), there exists a
solution r of eq. (6).

Finally, it is shown that

n=l S

is an approximation of the solution of Problem D that converges to it
uniformly in wider sense in R--S. It is noted that Theorems 4 and
5 hold even if the norm Ilgllc(s) and the space C(S) are replaced by

g,,) ( lg(x)l dS}/
and L(S), respectively. This result is more useful in the numerical
analysis of Problem D.
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From the point of view of application, the result obtained here
will solve various diffraction problems of acoustic waves. In the fol-
lowing paper, the same problem for the Maxwell’s equations will be
studied, with the intention to solve diffraction problems of electromag-
netic waves. Finally, it is noted that the present theory is easily
modified to hold for the theory of the Dirichlet problem for the Laplace
(potential) equation.
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