
No. 6] Proc. Japan Acad., 100, Ser. A (2024) 31

Hook formula for Coxeter groups via the twisted group ring

By Leonardo C. Mihalcea,∗) Hiroshi Naruse∗∗) and Changjian Su∗∗∗)

(Communicated by Masaki Kashiwara, m.j.a., May 13, 2024)

Abstract: We use Kostant and Kumar’s twisted group ring and its dual to formulate and
prove a generalization of Nakada’s colored hook formula for any Coxeter groups. For dominant
minuscule elements of the Weyl group of a Kac–Moody algebra, this provides another short proof
of Nakada’s colored hook formula.
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1. Introduction. The purpose of this note
is to give a short algebraic proof of Nakada’s col-
ored hook formula (Corollary 5.1) and its general-
ization to any Coxeter groups (Theorem 5.1). As a
by-product of our formulation, we get a simple proof
of Shi’s Yang–Baxter relations [11] in the group al-
gebra Q(V )[W ] for a Coxeter group W (see Remark
4.1 below), where V is the underlying vector space
of the root datum of W , see Section 2.1.

For the proof, we use Kostant–Kumar’s twisted
group ring HQ (see 3.1), Lw ∈ HQ (cf. Definition1),
the dual basis ηw (cf. Equation 9), and a Molev–
Sagan recursion formula (17) (cf. [9, Prop. 3.2]).
The Lw and ηw are algebraic counterparts of some
geometric objects studied in [8]. In Appendix 6, we
give a brief explanation of the geometric background
of this construction in the finite Weyl group case.

2. Coxeter group and root system. In
this section, we recall some fundamental properties
of the Coxeter group and its root system.

2.1. Coxeter group and root system.
Let (W, S) be a Coxeter system, where S = {si}i∈I

is the set of generators. For any w ∈ W , the support
of w (the set of generators in S which appear in some
reduced expression of w) is a finite set. Hence, for the
purpose of generalizing the hook formula (Theorem
5.1), we can assume I := {1, 2, . . . , r} is a finite set.
Let (V, Σ, Σ∨) be a triple (called the root datum of
W ) with the following properties:
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(R0) V is a finite-dimensional vector space over R
which is a representation space of W . Let
V ∗ = HomR(V,R), with the natural pairing
(·, ·) : V × V ∗ → R.

(R1) Σ = {α1, . . . , αr} ⊂ V and Σ∨ =
{α∨

1 , . . . , α∨
r } ⊂ V ∗. The elements in Σ and

Σ∨ are assumed to be linearly independent.
(R2) (αi, α

∨
i ) = 2 for i = 1, 2, . . . , r.

(R3) W acts on V by siλ = λ − (λ, α∨
i )αi for λ ∈ V

and i = 1, 2, . . . , r.
Note that such a triple (V, Σ, Σ∨) always exists. For
example, for a Coxeter system (W, S), a “Cartan”
matrix C = (ci,j)r×r whose entry is presumed to be
ci,j = (αj , α

∨
i ), can defined as follows: Let M =

(mi,j)r×r be the Coxeter matrix of (W, S) whose en-
try mi,j is the order of sisj . By definition, mi,j =
mj,i ∈ {1, 2, 3, , . . .} ∪ {∞} and mi,i = 1 for 1 ≤
i, j ≤ r. We define a “Cartan” matrix C = (ci,j)r×r

whose entry ci,j is a real number satisfying the fol-
lowing conditions.
(1) ci,i = 2 (1 ≤ i ≤ r).
(2) if i �= j then ci,j ≤ 0, and ci,j = 0 if mi,j = 2.
(3) for mi,j > 2, it is required that

ci,jcj,i = 4 cos
(

π

mi,j

)2

.

For a crystallographic Coxeter group W (mi,j ∈
{1, 2, 3, 4, 6,∞} for all 1 ≤ i, j ≤ r), such as the
Weyl group of a Kac–Moody algebra, we can take all
ci,j to be integers. For a standard choice of an arbi-
trary Coxeter group, we can take C to be symmetric
(ci,j = cj,i = −2 cos(π/mi,j)). Then using the argu-
ment of [5, Proposition 1.1] over the real numbers,
we have such a triple (V, Σ, Σ∨) for (W, S).

Let R = {w(αi) | w ∈ W, i = 1, . . . , r} ⊂ V be
the set roots of (W, S). It is known that we have a
disjoint union R = R+ 	 R−, where R+ = {α ∈ R |
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α =
∑r

i=1 ciαi, ci ≥ 0} is the set of positive roots
and R− = −R+ (cf. [2] for basic properties of the
root system of a Coxeter group.). The action of W
on V ∗ is defined by

si(y) = y − (αi, y)α∨
i for y ∈ V ∗ for i = 1, 2, . . . , r.

For a root γ ∈ R, the dual root γ∨ ∈ V ∗ is defined
by γ∨ = w(α∨

i ) if γ = w(αi). For a positive root
β ∈ R+, let sβ ∈ W be the corresponding reflection,
i.e.

sβ(x) = x − (x, β∨)β for x ∈ V,

sβ(y) = y − (β, y)β∨ for y ∈ V ∗.

The pairing (·, ·) is W -invariant, i.e.

(w(x), w(y)) = (x, y) for all x ∈ V, y ∈ V ∗, w ∈ W.

2.2. Some lemmas. In this section, we list
some results about the Coxeter group and the root
system. For any w ∈ W , let S(w) := R+ ∩ wR−.

Lemma 2.1. For a reduced expression w =
si1si2 · · · si�

, let

(1) βj := si1 · · · sij−1αij (1 ≤ j ≤ �).

Then |S(w)| = � and S(w) = {β1, β2, . . . , β�}.
Proof. This is a consequence of [4, Theorem 5.4],

i.e., for u ∈ W , �(usi) > �(u) ⇐⇒ u(αi) > 0.
Remark 2.1. By this Lemma, we see that the

representation of W on V is faithful.
Let J ⊂ S be a subset of generators of W

and WJ be the subgroup generated by {si}i∈J . Let
W J := W/WJ be the set of minimal length coset
representatives. Let us denote by < the Bruhat or-
der on W ([4, 5.9]). Then it induces a Bruhat order
on W J . An element χ ∈ V is said to be dominant if
(χ, α∨

j ) ≥ 0 for any 1 ≤ j ≤ r.
Lemma 2.2 ([1, Ch.5, §4.6]). If χ ∈ V is

dominant, the stabilizer subgroup stabW (χ) := {w ∈
W | w(χ) = χ} is equal to WJ for some J ⊂ S, i.e.,
for x �= y ∈ W J , x(χ) − y(χ) �= 0.

Lemma 2.3 ([3, Lemma 4.1]). Asume χ ∈ V
is dominant with stabW (χ) = WJ . For x < y ∈
W J , the two conditions below are equivalent.

(a) ∃γ ∈ R+ such that yWJ = xsγWJ ,
(b) ∃β ∈ R+ such that yWJ = sβxWJ .

Moreover, if these conditions are satisfied, then

x(χ) − y(χ) = (χ, γ∨)β.

In particular, β is unique if it exists.

3. Twisted group ring and its dual.

3.1. Kostant–Kumar twisted group ring
HQ. Assume (W, S) is a Coxeter system with root
datum (V, Σ, Σ∨) (cf. Section 2). The Coxeter group
analog of the Kostant–Kumar’s twisted group alge-
bra is HQ := Q(V )�R[W ], the smash product of the
fraction field Q(V ) of the symmetric algebra S(V )
with the group algebra R[W ]. As a vector space
over R, HQ = Q(V )⊗R R[W ], with Q(V )-free basis
{δw}w∈W , and the multiplication is defined as fol-
lows. For a =

∑
w∈W awδw, b =

∑
u∈W buδu ∈ HQ,

a · b =
∑

w,u∈W

aww(bu)δwu.

If W is the Weyl group of a Kac–Moody algebra with
an integral Cartan matrix, HQ ⊗ C is the twisted
group ring introduced by Kostant–Kumar [6], where
the divided difference operator ∂i = 1

αi
δsi− 1

αi
δid and

the associated basis element ∂w ∈ HQ (w ∈ W ) are
defined. Here we introduce another (inhomogeneous)
basis Lw, which is the main tool of our calculation.

Definition 1. For i = 1, 2, . . . r, define Li ∈
HQ by Li := 1+αi

αi
δsi − 1

αi
δid, i.e. Li = ∂i + δsi .

From the definition, δid+αiLi = (1+αi)δsi and
L2

i = δid.

Proposition 3.1. For w ∈ W , the following
holds.

(a)w Let w = si1 · · · si�
∈ W be a reduced expression,

and define Lw := Li1 · · · Li�
. Then it does not

depend on the choice of the reduced expression
of w.

(b)w For χ ∈ V ⊂ S(V ), the following equality holds.
(We abbreviate χδid as χ.)

(2) Lwχ = w(χ)Lw −
∑

γ∈S(w−1)

(χ, γ∨)Lwsγ .

(c)w Let Lw =
∑
v∈W

ew,vδv, ew,v ∈ Q(V ). Then

ew,v = 0 unless v ≤ w, and

ew,w =
∏

β∈S(w)

1 + β

β
.

Proof. We will prove (a)w,(b)w,(c)w simultane-
ously, by induction on length �(w) of w as in [6]. If
�(w) = 1, i.e., w = s for s ∈ S, we can check the for-
mulae (a)s,(b)s,(c)s directly. Assume �(w) > 1 and
u = sw < w, s ∈ S. Then we have, by (b)u and (b)s,
LsLuχ =
w(χ)LsLu − (u(χ), α∨

s )Lu −
∑

γ∈S(u−1)

(χ, γ∨)LsLusγ .
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As S(w−1) = S(u−1) ∪ {u−1αs}, and (a)z for ele-
ments z of length less than �(w), we have

LsLuχ − w(χ)LsLu = −
∑

γ∈S(w−1)

(χ, γ∨)Lwsγ ,

which gives part (b)w. Likewise, for s′ ∈ S with v =
s′w < w, we have

Ls′Lvχ − w(χ)Ls′Lv = −
∑

γ∈S(w−1)

(χ, γ∨)Lwsγ .

Therefore,

(3) LsLuχ − w(χ)LsLu = Ls′Lvχ − w(χ)Ls′Lv.

Write LsLu =
∑

x∈W qxδx , and Ls′Lv =∑
x∈W q′xδx (qx, q′x ∈ Q(V )). Then by (c)u and (c)v,

we have qx = q′x = 0 unless x ≤ w and

(4) qw =
∏

β∈S(w)

1 + β

β
= q′w,

which gives part (c)w. From (3) we have

(x(χ) − w(χ))qx = (x(χ) − w(χ))q′x for ∀x ∈ W.

As V is faithful (Remark 2.1), we have qx = q′x for
x �= w. Together with (4), we have

LsLu = Ls′Lv,

which proves part (a)w.
By this Proposition, {Lw}w∈W forms a basis of

the left Q(V )-module HQ, and if we expand Lwχ in
this basis

(5) Lwχ =
∑
v∈W

cw
χ,vLv, cw

χ,v ∈ Q(V ), χ ∈ V,

we have

(6) cw
χ,v =

⎧⎨
⎩

w(χ) if v = w
−(χ, γ∨) if v < w = vsγ , γ ∈ R+

0 otherwise
.

3.2. Dual basis {ηw}w∈W of {Lw}w∈W .
Let Fun(W, Q(V )) denote the ring of functions on
W with values in Q(V ), with natural Q(V )-module
structure by (qξ)(w) = qξ(w) for q ∈ Q(V ), w ∈ W ,
and ξ ∈ Fun(W, Q(V )). There is a perfect pairing

〈·, ·〉 : HQ × Fun(W, Q(V )) → Q(V ), given by

(7) 〈a, ξ〉 =
∑

w∈W

awξ(w),

for a =
∑

w∈W

awδw ∈ HQ and ξ ∈ Fun(W, Q(V )).

Here a pairing 〈, 〉 : M1 ×M2 → Q(V ) is perfect if it
induces an isomorphism M∗

1 � M2 of Q(V )-modules.

Lemma 3.1. For χ ∈ V , define Lχ ∈
Fun(W, Q(V )) by Lχ(w) := w(χ). Then we have

(8) 〈hχ, f〉 = 〈h, Lχf〉

for h ∈ HQ, f ∈ Fun(W, Q(V )).

Proof. If h =
∑

w∈W

awδw, then hχ =

∑
w∈W

aww(χ)δw. Therefore we have 〈hχ, f〉 =

∑
w∈W

aww(χ)f(w) =
∑

w∈W

aw(Lχf)(w) = 〈h, Lχf〉.

We can define element ηv ∈ Fun(W, Q(V )) for
v ∈ W by duality

(9) 〈Lw, ηv〉 = δw,v for ∀w ∈ W.

Using this duality and Proposition 3.1 (c)w, we have

(10)

ηv(w) = 0 unless v ≤ w, and ηw(w) =
∏

β∈S(w)

β

1 + β
.

Let J ⊂ S be a subset of the generators of W .
Definition 2. For v ∈ W J , define ηv

J ∈
Fun(W J , Q(V )) by

(11) ηv
J (w) :=

∑
u∈vWJ ,u≤w

ηu(w) for w ∈ W J .

We can formally write ηv
J =

∑
u∈vWJ

ηu, as

ηu(w) = 0 if u �≤ w. From (10) it follows that for
v, w ∈ W J ,
(12)

ηv
J(w) = 0 unless v ≤ w, and ηw

J (w) =
∏

β∈S(w)

β

1 + β
.

Thus, {ηw
J | w ∈ W J} is a basis for Fun(W J , Q(V ))

over Q(V ).
For any v, z ∈ W J and χ ∈ V WJ , define

(13) cz,J
χ,v :=

∑
u∈WJ

czu
χ,v.

By the equalities (6) and (13), we have the following
equality.

Lemma 3.2.

cz,J
χ,v =

⎧⎪⎨
⎪⎩

vχ, if v = z;
−(χ, γ∨), if vWJ < vsγWJ = zWJ , γ ∈ R+;
0, otherwise.
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Proposition 3.2. For χ ∈ V WJ , define LJ
χ ∈

Fun(W J , Q(V )) by LJ
χ(z) = z(χ) for z ∈ W J . Then

for any v ∈ W J ,
(14)
(LJ

χηv
J )(w) =

∑
z∈W J ,v≤z≤w

cz,J
χ,vηz

J(w), for w ∈ W J .

We can formally write LJ
χηv

J =
∑

z∈W J ,v≤z

cz,J
χ,vηz

J .

Proof. Combining duality (9), Equation (5) and
Lemma 3.1, we get
(15)

(Lχηv)(w) =
∑

z∈W,v≤z≤w

cz
χ,vηz(w), for w ∈ W.

Moreover, it is easy to see that czy
χ,vu = czyu−1

χ,v for
any z, v ∈ W J and y, u ∈ WJ . Then Equation (14)
readily follows by these observations.

For u, v, w ∈ W J , let dw,J
u,v ∈ Q(V ) be the struc-

ture constants, i.e.,

(16) ηu
Jηv

J =
∑

w∈W J

dw,J
u,v ηw

J .

Lemma 3.3. The coefficients dw,J
u,v ∈ Q(V )

have the following properties.
(i) For u, v, w ∈ W J , dw,J

u,v = 0 unless u ≤ w and
v ≤ w.

(ii) For v, w ∈ W J , dw,J
v,w = ηv

J(w),

(iii) For w ∈ W J , dw,J
w,w =

∏
β∈S(w)

β

1 + β
.

Proof. Given u, v ∈ W J , if there is a w ∈ W J

such that u �≤ w or v �≤ w and dw,J
u,v �= 0, take a

minimal such w in Bruhat order and evaluate both
sides of (16) at w. The left hand side becomes 0, but
right hand side is nonzero by (12), which gives a con-
tradiction. Therefore (i) holds. As ηv

J (w)ηw
J (w) =

dw,J
v,w ηw

J (w), and ηw
J (w) = ηw(w) �= 0, we have (ii).

Finally, (iii) follows from Equation (12).

Proposition 3.3. For any u, v, w ∈ W J and
any vector χ ∈ V WJ , the following holds:

(cw,J
χ,w − cu,J

χ,u)dw,J
u,v =∑

u<x≤w,x∈W J

cx,J
χ,udw,J

x,v −
∑

u,v≤y<w,y∈W J

cw,J
χ,y dy,J

u,v .

Proof. By taking the coefficient of ηw
J in

Lχ(ηu
Jηv

J ) = (Lχηu
J )ηv

J , we have

cw,J
χ,wdw,J

u,v +
∑

u,v≤y<w,y∈W J

cw,J
χ,y dy,J

u,v

= cu,J
χ,udw,J

u,v +
∑

u<x≤w,x∈W J

cx,J
χ,udw,J

x,v , from which the

assertion holds.
Corollary 3.1. If χ ∈ V WJ satisfies cw,J

χ,w �=
cu,J
χ,u (e.g. χ = πJ , cf. Lemma 2.2.), then we have

dw,J
u,v =

1

cw,J
χ,w − cu,J

χ,u

×⎛
⎝ ∑

u<x≤w,x∈W J

cx,J
χ,udw,J

x,v −
∑

u,v≤y<w,y∈W J

cw,J
χ,y dy,J

u,v

⎞
⎠ .

In particular, for the case v = w,

(17) dw,J
u,w =

∑
x∈W J ,u<x≤w

cx,J
χ,u

cw,J
χ,w − cu,J

χ,u

dw,J
x,w .

4. Yang–Baxter elements in the group
algebra Q(V )[W ]. Let Q(V )[W ] denote the
group algebra of W over Q[V ]. The purpose of this
section is to relate HQ with Q(V )[W ] through a left
Q(V )-module homomorphism and prove the equa-
tions in Corollary 4.1. As a byproduct, we get a
simple proof for the Yang–Baxter relations for the
Coxeter groups ( [11, Proposition4.1]).

Let Δi := (1 + αi)δsi = 1 + αiLi ∈ HQ. For a
reduced expression w = si1 · · · si�

, define

(18) Δw := Δi1Δi2 · · ·Δi�
∈ HQ.

Then it is easy to see that Δw = A(w)δw, where

A(w) =
�∏

j=1

(1+βj) for βj defined in (1). By Lemma

2.1, Δw does not depend on the choice of the reduced
expression for w. We can expand Δw in terms of
{Lv}v∈W as follows:

(19) Δw =
∑
v∈W

q(v, w)Lv, q(v, w) ∈ Q(V ).

Lemma 4.1. The coefficients q(v, w) satisfy
the following properties.
(i) q(v, w) = A(w)ηv(w).
(ii) q(v, w) = 0 unless v ≤ w.
(iii) If siw > w,

(20) q(u, siw) = si(q(u, w)) + αisi(q(siu, w)).

Proof. (i) follows by evaluation of 〈Δw, ηv〉, us-
ing definitions (7) and (9). (ii) follows from (i) and
(10). If siw > w, by comparing the coefficient of Lu

in
Δsiw = ΔsiΔw = (1 + αi)δsi

∑
u∈W

q(u, w)Lu

=
∑
u∈W

si(q(u, w))(1 + αiLi)Lu,
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we get the relation (iii), as (Li)2 = δid.
We can now define a left Q(V )-module isomor-

phism Φ : HQ → Q(V )[W ] by sending

Φ

(∑
w∈W

cwLw

)
=
∑

w∈W

cww, cw ∈ Q(V ).

Definition 3. For w ∈ W , define a Yang–
Baxter element Yw := Φ(Δw) ∈ Q(V )[W ].

Then by (19),

(21) Yw =
∑
v≤w

q(v, w)v.

Proposition 4.1. [11] For a reduced expres-
sion w = si1si2 · · · si�

∈ W , let βj be as in (1). Then
the following equality holds in Q(V )[W ].

(22) Yw = (1 + β1si1)(1 + β2si2) · · · (1 + β�si�
).

Proof. It follows directly by induction on �(w)
and Lemma 4.1 (iii).

Remark 4.1. The proof of the above Propo-
sition gives a simple proof for [11, Theorem 3.2], by
replacing αi with −αi for all i ∈ I.

Corollary 4.1. For w ∈ W , we have

(23) A(w) =
∑
v≤w

q(v, w),

(24)
∑
v≤w

ηv(w) = 1,

(25) if w ∈ W J ,
∑

v∈W J ,v≤w

ηv
J(w) = 1.

Proof. Because of the Coxeter relations for the
generators s ∈ S, there is a Q(V )-algebra homomor-
phism ev : Q(V )[W ] → Q(V ) defined by ev(s) =
1 for ∀s ∈ S. Hence, ev(Yw) =

∑
v≤w

q(v, w) by equa-

tion (21), and ev(Yw) = A(w) by equation (22).
Therefore we have equality (23). Dividing both sides
of equality (23) by A(w), we get the equality (24) by
Lemma 4.1 (i). The equality (25) follows from (24)
and the definition of ηv

J(w) (11).
5. Main Theorem. In the same setup as

in Section 3.2, for any x, y ∈ W J , denote by x
β→ y

if yWJ = sβxWJ and x < y. Then we have the
following formula.

Theorem 5.1 (Hook formula for Coxeter
group). Let χ ∈ V be dominant with stabilizer sub-
group stabW (χ) = WJ . For any w ∈ W J , the fol-
lowing equality holds.

∑ mk

m1β1 + m2β2 + · · · + mkβk
· . . . · m1

m1β1

=
∏

β∈S(w)

(
1 +

1
β

)
,

(26)

where the sum is over all directed paths

xk
βk→ xk−1

βk−1→ . . .
β1→ x0 = w in W J ,(27)

for any integer k ≥ 0, and mi := (χ, γ∨
i ) for the

unique γi ∈ R+ such that xi−1WJ = xisγiWJ (1 ≤
i ≤ k).

Taking the lowest degree terms in equation (26),
we get∑ mk

m1β1 + m2β2 + · · · + mkβk
· . . . · m1

m1β1

=
∏

β∈S(w)

1
β

,
(28)

where the sum is over all directed sequences as in
(27) with length k = �(w).

Proof. By Lemma 2.2, cw,J
χ,w −cu,J

χ,u = wχ−uχ �=
0 for any u < w ∈ W J . Therefore we can apply the
formula (17) recursively to get

(29) dw,J
u,w =

∑(
k∏

i=1

cxi,J
χ,xi−1

cw,J
χ,w − c

xi−1,J
χ,xi−1

)
dw,J

w,w,

where the summation is over all integers k ≥ 1,
and sequences u = x0 < x1 < x2 < · · · < xk =
w, xi ∈ W J . On the other hand, by (25) and
Lemma 3.3,

∑
u≤w dw,J

u,w = 1 and we have equality∑
u∈W J ,u≤w

dw,J
u,w

dw,J
w,w

=
∏

β∈S(w)

1 + β

β
. Then the theorem

follows from Lemma 2.3 and Lemma 3.2.
An element w ∈ W is said to be χ-minuscule

(χ ∈ V ) if

(sij+1sij+2 · · · si�
(χ), α∨

j ) = 1 (j = 1, . . . �)

for a reduced decomposition w = si1 · · · si�
.

Lemma 5.2 ([8, Lemma 3.5, Corollary 3.10]).
In the setting of Theorem 5.1, if u ∈ W is χ-
minuscule, then u ∈ W J and mi = 1 (1 ≤ i ≤
k) for each directed path (27).

Corollary 5.1 (Nakada’s colored hook formula
[10, Theorem 7.1]). Let W be the Weyl group of a
Kac–Moody algebra, with the set of simple reflec-
tions S, acting on the real Cartan subalgebra hR.
Let λ ∈ V = h∗

R be a dominant integral weight,
stabW (λ) = WJ , and w ∈ W be a λ-minuscule ele-
ment. Then we have
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(30)∑ 1
β1 + β2 + · · · + βk

· . . . · 1
β1

=
∏

β∈S(w)

(
1 +

1
β

)
,

where the sum is over all integers k ≥ 0 and directed
paths (27).

Remark 5.1. (i) Nakada’s original formula is
written in terms of pre-dominant integral weights.
The equivalence of the formulation above is ex-
plained in [8, Section 3.2].

(ii) The terminology ‘hook’ arises from the
Grassmannian situation, where we may consider
each β ∈ S(w) as a hook in the partition for w.

(iii) There is a K-theoretic analog of Theorem.
5.1, which will be considered elsewhere.

6. Appendix: Geometric interpretation.
Here we comment briefly on the geometric interpre-
tation of our construction for the finite Weyl group
case. In [8], we noticed that for a finite Weyl group
W , Nakada’s colored hook formula can be derived
using geometric arguments via the Chern–Schwartz–
MacPherson (CSM) classes of the Schubert cells. Let
G be a reductive algebraic group with Borel B, max-
imal torus T , and Weyl group W . Let X := G/B be
the full flag variety, and HT

∗ (X), H∗
T (X) denote the

T -equivariant homology and T -equivariant cohomol-
ogy, respectively. For any w ∈ W , there are Schu-
bert cells X(w)◦ = BwB/B, Y (w)◦ = B−wB/B,
and their closures X(w) = X(w)◦, Y (w) = Y (w)◦

inside X. We refer the readers to [7] and [8] for un-
explained terminology below.

There is a left Weyl group action on HT
∗ (G/B).

For any w ∈ W , let us denote its action by
δw. Then we have the following correspondence:
∂w Schubert class [X(w)] ∈ HT

∗ (X),

Lw
CSM class of the Schubert cell
cSM (X(w)◦) ∈ HT

∗ (X),

ηv Segre–MacPherson class of the opposite
Schubert cell sM (Y (v)◦) ∈ H∗

T (X)loc,

ηv(w) the localization sM (Y (v)◦)|w.
To be more precise, the operator Lw becomes

the left Demazure–Lusztig operator, denoted by T L
w

in [7], and it is shown in Theorem 4.4 of loc. cit.

that

(31) T L
w (cSM (X(id)◦)) = cSM (X(w)◦).

The other identifications can be proved similarly.
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