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Abstract: This is an announcement of our new vanishing theorems for projective

morphisms between complex analytic spaces. We established a complex analytic generalization

of Kollár’s torsion-freeness and vanishing theorem for analytic simple normal crossing pairs.

Although our results may look artificial, they have already played a crucial role for the study of

minimal models in the complex analytic setting.
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1. Introduction. This is a short announce-

ment of our new vanishing theorems for projective

morphisms between complex analytic spaces. All

the details will be published in [F6].

In his monumental paper [K], Kollár general-

ized the Kodaira vanishing theorem for complex

projective varieties. His results consist of injectiv-

ity, torsion-free, and vanishing theorems. We have

already had a powerful generalization of Kollár’s

package for reducible algebraic varieties (for the

details, see, for example, [F4, Chapter 5]), which

plays a crucial role for the study of log canonical

pairs, semi-log canonical pairs, and quasi-log

schemes in the theory of minimal models of

algebraic varieties (see [F1], [F3], [F4, Chapter 6],

and so on). Hence it was highly desirable to

establish an analytic generalization (see [F4, Re-

mark 5.8.3] and [F5, 1.10]). Roughly speaking, from

the Hodge theoretic viewpoint, Kollár’s original

result in [K] is pure and the generalization in

[F4, Chapter 5] is mixed. Recently, in [F6], we

established an appropriate generalization of

[F4, Chapter 5] for projective morphisms of com-

plex analytic spaces. By this new generalization,

we can translate the results in [F1], [F3], and

[F4, Chapter 6] into the ones for projective mor-

phisms between complex analytic spaces (see [F7]

and [F8]). More precisely, in [F7], we proved the

cone and contraction theorem of normal pairs for

projective morphisms between complex analytic

spaces as an application of [F6]. Then, in [F8], we

discussed quasi-log structures for complex analytic

spaces. We have already established the theory of

minimal models for projective morphisms of com-

plex analytic spaces with mild singularities in [F5],

which is an analytic generalization of the great

work of Birkar–Cascini–Hacon–McKernan. We

note that [F5] does not need our new vanishing

theorems. The Kawamata–Viehweg vanishing the-

orem for projective morphisms of complex analytic

spaces is sufficient for [F5]. Finally, we recommend

the reader who is interested in vanishing theorems

and the minimal model program to see [F4, Chap-

ter 3].

In this paper, every complex analytic space

is assumed to be Hausdorff and second-countable.

We will freely use the standard notation in [F1],

[F4], [F5], and so on. Let us prepare various

definitions in order to explain our new vanishing

theorems.

1.1 (Analytic globally embedded simple nor-

mal crossing pairs). Let X be a simple normal

crossing divisor on a smooth complex analytic space

M and let B be an R-divisor on M such that the

support of BþX is a simple normal crossing divisor

on M and that B and X have no common

irreducible components. Then we put D :¼ BjX
and consider the pair ðX;DÞ. The pair ðX;DÞ is

called an analytic globally embedded simple normal

crossing pair.

Analytic globally embedded simple normal

crossing pairs naturally appear when we use the

resolution of singularities.
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1.2 (Analytic simple normal crossing pairs).

If the pair ðX;DÞ is locally isomorphic to an

analytic globally embedded simple normal crossing

pair and the irreducible components of X and D are

all smooth, then ðX;DÞ is called an analytic simple

normal crossing pair. When ðX;DÞ is an analytic

simple normal crossing pair, X has an invertible

dualizing sheaf !X.

1.3 (Strata). Let ðX;DÞ be an analytic sim-

ple normal crossing pair. Let �:X� ! X be the

normalization. Let � be the union of ��1
� D and the

inverse image of the singular locus of X. If W is an

irreducible component of X or the �-image of some

log canonical center of ðX�;�Þ, then W is called a

stratum of ðX;DÞ. Note that X� is smooth and the

support of � is a simple normal crossing divisor on

X�. We also note that if the coefficients of D are in

½0; 1� then ðX�;�Þ is log canonical.

In the theory of minimal models, the notion of

R-line bundles is indispensable.

1.4 (R-line bundles and Q-line bundles). Let

X be a complex analytic space and let PicðXÞ be

the group of line bundles on X, that is, the Picard

group of X. An element of PicðXÞ �Z R (resp.

PicðXÞ �Z Q) is called an R-line bundle (resp. a

Q-line bundle) on X. As usual, in this paper, we

write the group law of PicðXÞ �Z R additively for

simplicity of notation.

We need Siu’s theorem to state our result.

1.5 (Associated subvarieties, see [Si]). Let F
be a coherent sheaf on a complex analytic space X.

Then there exists a locally finite family fYigi2I of

complex analytic subvarieties of X such that

AssOX;xðFxÞ ¼ fpx;1; . . . ; px;rðxÞg

holds for every point x 2 X, where px;1; . . . ; px;rðxÞ
are the prime ideals of OX;x associated to the

irreducible components of the germs Yi;x of Yi at x

with x 2 Yi. We note that each Yi is called an

associated subvariety of F .

The following theorem is the main result

of [F6], which is obviously an analytic general-

ization of [F4, Theorem 5.6.2].

Theorem 1.6 (Main theorem, [F6, Theorem

1.1]). Let ðX;�Þ be an analytic simple normal

crossing pair such that the coefficients of � are in

½0; 1�. Let f :X ! Y be a projective morphism to a

complex analytic space Y and let L be a line bundle

on X. Let q be an arbitrary nonnegative integer.

Then we have the following properties.

(i) (Strict support condition). If L� ð!X þ�Þ is

f-semiample, then every associated subvariety

of Rqf�L is the f-image of some stratum of

ðX;�Þ.
(ii) (Vanishing theorem). If L� ð!X þ�Þ �R f�H

holds for some �-ample R-line bundle H on Y ,

where �:Y ! Z is a projective morphism to a

complex analytic space Z, then we have

Rp��R
qf�L ¼ 0 for every p > 0.

Since we treat complex analytic spaces, we

have to be careful about some basic definitions.

1.7 (Globally R-Cartier divisors). In Theo-

rem 1.6, we always implicitly assume that � is

globally R-Cartier, that is, � is a finite R-linear

combination of Cartier divisors on X. We note that

if the number of the irreducible components of the

support of � is finite then � is globally R-Cartier.

This condition is harmless to applications because

the restriction of � to a relatively compact open

subset of X has only finitely many irreducible

components in its support. Under the assumption

that � is globally R-Cartier, we can obtain an

R-line bundle N naturally associated to L�
ð!X þ�Þ, which is a hybrid of line bundles L and

!X and a globally R-Cartier divisor �. The

assumption in Theorem 1.6 (i) means that N is a

finite positive R-linear combination of f-semiample

line bundles on X. The assumption in Theorem 1.6

(ii) means that N ¼ f�H holds in PicðXÞ �Z R.

1.8. Let X ¼ C and let fPng1n¼1 be a set of

mutually distinct discrete points of X. Then � ¼P1
n¼1

1
n Pn is a Q-Cartier Q-divisor on X. However,

it is not a finite R-linear combination of Cartier

divisors on X. Hence it is not a globally R-Cartier

divisor.

Theorem 1.6 (ii) can be generalized as follows.

It is an analytic generalization of [F4, Theorem

5.7.3].

Theorem 1.9 (Vanishing theorem of Reid–

Fukuda type, [F6, Theorem 1.2]). Let ðX;�Þ be

an analytic simple normal crossing pair such that

the coefficients of � are in ½0; 1�. Let f :X ! Y and

�:Y ! Z be projective morphisms between complex

analytic spaces and let L be a line bundle on X. If

L� ð!X þ�Þ �R f�H holds such that H is an

R-line bundle, which is nef and log big over Z with

respect to f : ðX;�Þ ! Y , then Rp��R
qf�L ¼ 0 holds

for every p > 0 and every q.

The definition of nef and log big line bundles in

Theorem 1.9 is as follows:
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1.10 (Nef and log big line bundles). In The-

orem 1.9, we note that H is said to be nef and log big

over Z with respect to f : ðX;�Þ ! Y if H � C � 0

holds for every projective integral curve C on Y

such that �ðCÞ is a point and HjfðW Þ can be written

as a finite positive R-linear combination of �-big

line bundles on fðW Þ for every stratum W of

ðX;�Þ.
It is more or less well known that Theorem 1.6

follows from Theorem 1.11 (i) and (ii) below and

that Theorem 1.11 (iii) is an easy consequence of

Theorem 1.11 (i) and (ii). Hence all we have to do is

to establish Theorem 1.11 (i) and (ii). We will

prove them in Section 2.

Theorem 1.11 (Kollár’s package for analytic

simple normal crossing pairs). Let ðX;DÞ be an

analytic simple normal crossing pair such that D is

reduced and let f :X ! Y be a projective morphism

of complex analytic spaces. Then we have the

following properties.

(i) (Strict support condition). Every associated

subvariety of Rqf�!XðDÞ is the f-image of some

stratum of ðX;DÞ for every q.

(ii) (Vanishing theorem). Let �:Y ! Z be a pro-

jective morphism between complex analytic

spaces and let A be a �-ample line bundle on

Y . Then

Rp��ðA�Rqf�!XðDÞÞ ¼ 0

holds for every p > 0 and every q.

(iii) (Injectivity theorem). Let L be an f-semiample

line bundle on X. Let s be a nonzero element of

H0ðX;L�kÞ for some nonnegative integer k

such that the zero locus of s does not contain

any strata of ðX;DÞ. Then, for every q, the map

	s:Rqf�ð!XðDÞ � L�lÞ
! Rqf�ð!XðDÞ � L�kþlÞ

induced by �s is injective for every positive

integer l.
Kollár’s original result in [K] is a special case of

Theorem 1.11.

1.12 (Kollár’s original statement). If X is a

smooth projective variety with D ¼ 0 and f :X ! Y

is a projective surjective morphism onto a projec-

tive variety Y in Theorem 1.11 (i), then the strict

support condition is nothing but Kollár’s torsion-

freeness of Rqf�!X (see [K, Theorem 2.1 (i)]). We

further assume that Z is a point in Theorem 1.11

(ii). Then we can recover Kollár’s vanishing theo-

rem (see [K, Theorem 2.1 (iii)]). If X is a smooth

projective variety, D ¼ 0, and Y is a point, then

Theorem 1.11 (iii) coincides with Kollár’s original

injectivity theorem (see [K, Theorem 2.2]). Hence

Theorem 1.11 generalizes Kollár’s original state-

ment in [K].

Our approach to Theorem 1.11 in [F6], which

is completely different from the argument in

[F4, Chapter 5], is very simple. By using a spectral

sequence coming from Saito’s theory of mixed

Hodge modules (see Theorem 2.3 below), we can

reduce Theorem 1.11 to a well-known simpler case

due to Takegoshi (see Theorem 2.1 below). Hence

our proof of Theorem 1.11 in [F6] uses the semi-

simplicity of polarizable Hodge modules. The ad-

vantage of this approach is to clarify the meaning of

the strict support condition in Theorem 1.11 (i).

We note that the above semisimplicity comes from

the semisimplicity of polarizable variations of pure

Hodge structure since polarizable Hodge modules

are uniquely determined by their generic variations

of pure Hodge structure. We note that the reader

can find an alternative approach to Theorem 1.11,

which is free from Saito’s theory of mixed Hodge

modules and only depends on the semisimplicity of

polarizable variations of pure Hodge structure,

in [FF].

2. Sketch of Proof. In this section, we will

briefly discuss how to prove the theorems in

Section 1. As we have already explained in Sec-

tion 1, we reduce the problem to a well-known

simpler case due to Takegoshi by using a spectral

sequence coming from the theory of mixed Hodge

modules.

The following theorem is a special case of

Takegoshi’s result (see [T]). It is a complex analytic

generalization of Kollár’s torsion-freeness and van-

ishing theorem.

Theorem 2.1 (see [T]). Let f :X ! Y be a

projective surjective morphism from a smooth

irreducible complex analytic space X. Then

Rqf�!X is a torsion-free coherent sheaf on Y for

every q.

Furthermore, let �:Y ! Z be a projective

morphism between complex analytic spaces and let

A be a �-ample line bundle on Y . Then Rp��ðA�
Rqf�!XÞ ¼ 0 holds for every p > 0 and every q.

Although Takegoshi’s complex analytic ap-

proach to Kollár’s theorems in [T] is interesting,

we do not discuss it here since the statement of
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Theorem 2.1 is sufficient for our purposes in this

paper. For an alternative approach to Theorem 2.1,

we recommend the reader to see [F2, Corollaries 1.2

and 1.5].

2.2. Let ðX;DÞ be an analytic simple normal

crossing pair such that D is reduced. For any

positive integer k, we put

X½k� :¼ fx 2 X j multxX � kg�;

where Z� denotes the normalization of Z. Then X½k�

is the disjoint union of the intersections of k

irreducible components of X, and is smooth. We

have a reduced simple normal crossing divisor

D½k� 
 X½k� defined by the pull-back of D by the

natural morphism X½k� ! X. For any nonnegative

integer l, we put

D½k;l� :¼ fx 2 X½k� j multxD
½k� � lg�:

We note that D½k;0� ¼ X½k� holds by definition. We

also note that dimD½k;l� ¼ nþ 1� k� l, where n ¼
dimX. In this situation, W is a stratum of ðX;DÞ if

and only if W is the image of an irreducible

component of D½k;l� for some k > 0 and l � 0.

One of the main ingredients of [F6] is the

following result coming from Saito’s theory of

mixed Hodge modules (see [Sa1] and [Sa2]).

Theorem 2.3 ([FFS, Corollary 1 and 4.7. Re-

mark]). Let ðX;DÞ be an analytic simple normal

crossing pair with dimX ¼ n such that D is reduced

and let f :X ! Y be a projective morphism to a

smooth complex analytic space Y . Then there is the

weight spectral sequence

FE
�q;iþq
1 ¼

M

kþl¼nþqþ1

Rif�!D½k;l�=Y

) Rif�!X=Y ðDÞ;

degenerating at E2, and its E1-differential d1 splits

so that the FE
�q;iþq
2 are direct factors of FE

�q;iþq
1 .

For the details of the weight spectral sequence

of mixed Hodge modules on Y necessary for

Theorem 2.3, see [FFS]. Once we know Theo-

rems 2.1 and 2.3, it is easy to prove Theorem 1.11.

Here, we only prove Theorem 1.11 (i) and (ii).

Proof of Theorem 1.11. First we prove (i).

Since the problem is local, we may assume that Y is

a closed analytic subspace of a polydisc �m. By

replacing Y with �m, we may further assume that

Y itself is a polydisc. In this case, we can use

Theorem 2.3. We note that !Y ’ OY holds. By

Theorem 2.1,

FE
�q;iþq
1 ’

M

kþl¼nþqþ1

Rif�!D½k;l�

satisfies the strict support condition, that is, every

associated subvariety of

FE
�q;iþq
1 ’

M

kþl¼nþqþ1

Rif�!D½k;l�

is the f-image of some stratum of ðX;DÞ. By

Theorem 2.3, the associated subvariety of

FE
�q;iþq
2 ¼ FE

�q;iþq
1 is the f-image of some stratum

of ðX;DÞ. This implies that Rqf�!XðDÞ satisfies the

desired strict support condition. Next, we treat (ii).

We may assume that Z is a polydisc and Y is a

closed analytic subspace of Z 	Pn. By applying

Theorem 2.3 to f :X ! Y ,! Z 	Pn, we obtain the

following spectral sequence

E�q;iþq1 ¼
M

kþl¼nþqþ1

Rif�!D½k;l� ) Rif�!XðDÞ

which degenerates at E2 such that its E1-differential

d1 splits. By Theorem 2.1, we obtain

Rp��ðA� E�q;iþq1 Þ ¼ 0

for every p > 0. Since the E�q;iþq2 ¼ E�q;iþq1 are

direct factors of E�q;iþq1 , we have

Rp��ðA� E�q;iþq2 Þ ¼ 0

for every p > 0. This implies that

Rp��ðA� Rqf�!XðDÞÞ ¼ 0

holds for every p > 0. This is what we wanted. �

Since the proof of Theorem 1.6 in [F6] is

somewhat technical, we only give a sketch here.

For the details, see [F6, Sections 4 and 5].

Sketch of Proof of Theorem 1.6. For (i), we

take an arbitrary point y 2 Y . We may shrink Y

around y suitably. By perturbing �, we may further

assume that � is a Q-divisor. Then we reduce the

problem to the case where ðX;�Þ is an analytic

globally embedded simple normal crossing pair (see

[F6, Lemma 5.1]). By repeatedly taking suitable

finite covers, we can reduce the problem to Theo-

rem 1.11 (i). For (ii), we can shrink Z suitably

and may assume that � is a Q-divisor. As for (i), we

make ðX;�Þ an analytic globally embedded simple

normal crossing pair (see [F6, Lemma 5.1]) and

repeatedly take suitable finite covers. Then we

see that (ii) follows from Theorem 1.11 (ii). �

Theorem 1.9 follows from Theorem 1.6.
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Sketch of Proof of Theorem 1.9. We need no

new ideas for the proof of Theorem 1.9. The proof

of [F4, Theorem 5.7.3] can work with some suitable

modifications. Theorem 1.9 can be seen as a corol-

lary of Theorem 1.6. �

2.4 (Traditional approach versus new ap-

proach). Here we briefly review the main differ-

ence between the approach adopted in [F4, Chapter

5] and the one explained in this paper. Note that

in [F4, Chapter 5] everything is assumed to be

algebraic. In [F4, Chapter 5], we first establish an

injectivity theorem by using the theory of mixed

Hodge structures on cohomology with compact

support (see [F4, Sections 5.4 and 5.5]). By this

Hodge theoretic injectivity theorem, we can check

that the injectivity theorem like Theorem 1.11 (iii)

holds true in the algebraic setting (see, for example,

[F4, Theorem 5.6.1]). It is well known that we can

quickly recover Theorem 1.11 (i) and (ii) once we

obtain Theorem 1.11 (iii). When X is algebraic, we

can always take a compactification X of X and use

the mixed Hodge structures on X. On the other

hand, if X is not algebraic, then we can not always

compactify X. Thus, the argument in [F4, Chapter

5] does not work when X is not algebraic. Anyway,

a key result in the approach of [F4, Chapter 5] is

the injectivity theorem coming from the theory of

mixed Hodge structures on cohomology with com-

pact support. In the approach explained in this

paper, injectivity theorems do not play an impor-

tant role.
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