23. On the Potential Defined in a Domain.

By Tadao Kubo.
Tokushima Technical College.
(Comm. by T. TAKAGI, M. J. A., April 12, 1949.)

Let us consider a simply connected "schlicht" domain R on the z-plane whose boundary is a simple closed Jordan curve and an additive class F composed of the sets of points contained in a bounded closed subset E of R .

We suppose that a function $\mu(\geqq 0)$ of the sets is completely additive with respect to any set belonging to F.

Then we shall define the potential of mass-distribution μ on E in the form

$$
\begin{equation*}
V(z)=\int_{B} g(z, \zeta) d \mu(\zeta), \tag{1}
\end{equation*}
$$

where $g(z, \zeta)$ is a Green's function of the domain R with a pole ζ and z is any fixed point in R.

The integral(1) has a meaning in the sense of the Stieltjes Lebesgue-Radon's integral.

From the definition(1), we easily obtain

$$
\Delta V(z)=0 \quad(\Delta \text { is Laplacian })
$$

at any point in the free space $R-E$, for $\Delta g(z, \varsigma)=0$.
Now we shall study whether Gauss' theorems ${ }^{1)}$ on the potential in the usual sense hold for the potentil (1) in our definition, succeeding to the idea of "Green's Geometry" ${ }^{2}$ discussed by Prof. Matsumoto.

Let the subset E be lying entirely in R. Then we can suitably choose a constant $c(>0)$ such that the subset E is entirely enclosed by the equipotential curve $C_{0}: g\left(z, z_{0}\right)=c$ of Green's function of R with a pole z_{0}

Thus, let us consider the arithmetic mean of the potential (1) by integration on C_{0} for which we shall use the non-Euclidean (hyperbolic) metric $\mathrm{d} \sigma_{z}^{3}$ for the linear element.

Such an arithmetic mean by integration, we denote by $A\left\{V_{(Z)}\right\}$ for simplicity.

By Fubini's theorem on the change of order of integration, we have

$$
\begin{equation*}
\int_{C_{0}} V(z) d \sigma_{Z}=\int_{B}\left(\int_{C_{0}} g(z, \varsigma) d \sigma_{Z}\right) d \mu(\zeta) \tag{2}
\end{equation*}
$$

[^0]Next we represent conformally the domain R on the unit circle K on the x-plane by a regular function $x=x(z)$ such that the pole z is carried into the center of K.

In this representation, let any one point ς in E correspond to a point ξ in the circle K.

Then, it follows that if we denote the inverse function of $x(z)$ by $z(x), g(z(x), \varsigma)$ is a Green's function of the circle K on the x plane with a pole ξ. And if we denote the function by $g(x, \xi)$, we have

$$
\begin{align*}
g(x, \xi) & =\log \left|\frac{1-\xi x}{x-\xi}\right| \tag{3}\\
& =\log \frac{1}{|x-\xi|}+\log |1-\bar{\xi} x|
\end{align*}
$$

Let us transform the integral $\int_{\sigma_{0}} g(z, \varsigma) d \sigma_{z}$ in (2) into the integral ir the x-plane by above conformal transformation under which the hyperbolic linearelement is invariant and

$$
\begin{equation*}
d \sigma_{Z}=d \sigma_{x}=\frac{d s_{x}}{1-|x|^{2}} \tag{4}
\end{equation*}
$$

where $d s_{x}$ is the linearelement in the usual sense.
Here, the equipotential curve C_{0} is transformed into a circle K_{0} on the x-plane whose center is the origin and whose radius $\rho=\exp$ $(-c)$.

Accordingly we have by (3) and (4)

$$
\begin{aligned}
\int_{C_{0}} g(z, \zeta) d \sigma_{Z} & =\int_{K_{0}} g(x, \xi) d \sigma_{x} \\
& =\frac{1}{1-\rho^{2}}\left(\int_{K_{0}} \log \frac{1}{|x-\xi|} d s_{x}+\int_{\mathrm{K}_{0}} \log |1-\overline{\xi x}| d s_{x}\right) .
\end{aligned}
$$

By elmentary reckoning,

$$
\begin{equation*}
\frac{1}{2 \pi \rho} \int_{\mathrm{K}_{0}} \log \frac{1}{|x-\xi|} d s_{x}=\log \frac{1}{\rho} . \tag{5}
\end{equation*}
$$

And by the mean-valued theorem of the harmonic function,

$$
\begin{equation*}
\frac{1}{2 \pi \rho} \int_{\mathrm{K}_{0}}^{\log |1-\xi x| d s_{x}=\log 1=0} \tag{6}
\end{equation*}
$$

Therefore, we have by (5) and (6)

$$
\frac{1-\rho^{2}}{2 \pi \rho} \int_{K} g(x, \xi) d \sigma_{x}=\log \frac{1}{\rho}=c,
$$

where $\frac{2 \pi \rho}{1-\rho^{2}}$ is the hyperbolic length of the circumference of K_{0} and also of C_{0}.
By above result and (2), it can be proved that

$$
\begin{equation*}
A\{V(z)\}=c \int_{H} d \mu(\varsigma) . \tag{7}
\end{equation*}
$$

Since $\int_{B} d \mu(\varsigma)$ in (7) is the total mass of E, the following theorem is established.
Theorem I. The average on the circumference of a non-Euclidean circle $g\left(z, z_{0}\right)=c$ of the potential. (1) of masses lying entirely inside of the cirele is independent of their distfibution within the circle, and is equal to their total mass divided by the constant $1 / c$.
Here the constant $1 / c$ can be regarded as the non-Euclidean radius of the circle.

Moreover we have the following theorem similarly with above. Theorem II. The average on the circumference of a non-Euclidean circle $g\left(z, z_{0}\right)=c$ of the circumference af (1) of masses lying entirely outside of the circle is equal to the value of the potential at the center $z o$.
To get the last theorem, we have only to substitute

$$
\text { (5') } \begin{aligned}
\frac{1}{2 \pi \rho} \int_{\mathrm{K} 0} \log \frac{1}{|x-\xi|} d s_{x} & =\log \frac{1}{\rho^{\prime}} \quad\left[\rho^{\prime}=|\xi|=\exp \left(-g\left(\zeta, z_{0}\right)\right)\right] \\
& =g(\varsigma, z)=g\left(z_{0}, \varsigma\right)
\end{aligned}
$$

for (5)
Thus we have

$$
A\{V(z)\}=\int_{B} g\left(z_{0}, \varsigma\right) d \mu(\varsigma)=V\left(z_{0}\right)
$$

[^0]: 1) O. D. Kellogg : Foundations of Potential Theory (1929) P. 82.
 2) T. Matsumoto : Gekkan 'Sugaku' October, November, (1937).
 3) R. Nevanlinna : Eindeutige Analytische Funktionen (1936) S. 48.
