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19. Theory of Invariants in the Geometry of Paths. 1.
Determination of Covariant Differentiations.

By Tsuneo SUGURI.
Mathematical Institute, 2nd Branch, Kyiisy@i University, Kurume.
(Comm. by T. KUBOTA, M.J.A., April 12, 1950.)

§0. In an n-dimensional space X, with a coordinate system
2t (¢1=1,2,..., n) let us consider a system of paths of the m-th
order defined by

(0.1) o™ L HE(E, @y 2, 00e, 2™ )=0 (i=1,2,3,...,n).

The geometries of paths are called ordinary, intrinsic, and rheonomic
geometry according to their fundamental transformation groups
'i:w:[i‘w(xi)’ =x"(t, wt)y

i ii { i iii {
OF ) iz, P
Various researches were made already by many geometricians.
In this paper, we study the theory of invariants in the geometry

of paths under the so-called generalized rheonomic transformation
group

(0.2) =2 (t, o), IT=E(t)

which is a generalization of above three groups; let us assume that
the functions z* (¢, «'), £(¢) have continuous derivatives with respect
to ¢, &', a% ..., & up to the order needed, and that none of the

functional determinant l%] and the derivative At vanish.
e

z=x%a"),
t=t,

§1. Let » and w be two kinds of those geometric objects each
of which has uniquely determined components +' or w; in every

coordinate system &' in X, and ¢ and are subject to the transforma-
tion law

1.1 Fr=gr 27 v, We=o® o’ 1_d
ozt

under (0.2). We call such a geometric object v or w respectively
a contravariant or covariant vector of the second kind of weight p.
A geometric quantity f which is subject to the transformation law
F=oa?f is called a scalar of weight p.

Let us denote the n+1 independent variables ¢, a* by y’ (I=0,
1,..., n): y’=t, y'=z', then the transformation group (0.2) may
be written as y‘=y4(y’) in the X,,,=(#)xX,.
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A geometric object v or w, which obeys the ordinary trans-
formation law of vectors in X,,,,:

(1.2) o=, = Oy
oy’ oy”
is called a wector of the first kind.

Let the components of a vector v’ or w, of the first kind be
respectively (¢, %) or (w,, w,), then we can easily deduce the follow-
ing facts. (i). " is a scalar of weight —1. (ii). o' is a contra-
variant vector of the second kind of weight 0 when and only when
v'=0. (). w, is a covariant vector of the second kind of weight
0. (ii)’. w, s a scalar of weight 1 when and only when w=0.

Noticing that there exists a relation

i'ﬁ)a:o_( 850“ w(]),;+ 850“)
oxt ot

03 — A
under (0.2) between the geometric quantities x(‘ﬁ=%a;— and 5&‘”‘”=% R

we see that (iii). Vi=vi—a®W® 43 a contravariant vector of the
second kind of weight 0, (iii)’. W,=w;—yP w; is a covariant vector
of the first kind whose components are (—a™w;, w;), y$? being a
tensor with components y{*°=1, y{"'=a®, >’ =0.

§2. It is convenient for us to interpret that the system of equa-
tions (0.1) gives a correspondence between geometric objects, each
formed by a value of ¢ and line-element of the (m-1)-th order
(af, 2@, ..., 2, and line-element of the m-th order: (af, a@”,
ceey XD p'mi=_ Y, We denote the manifold of these geometric
objects (¢, ', 2%, ..., 2™ V) by X{";. The transformation laws of
the line-elemaent of the (m-1)-th order and of functions H*® are given
by the following recurrent formulas :

- r AR QL
9_6(’“)‘”=02~——~ax 2@ Lo —«aagt (r=0,1,..., m—2),

PPy
2.1 _ . _
—He=—0 CEa H’+d”§f il w““”—l-a———ax(m_l)w .
Qg1 =0 Qe ot

On the other hand a set of differentials {dx™*} of the line-element
of the (m-1)-th order is transformed according to

o T AT H(Pa

da®e= 3 O " g 20 q (p=0,1, ... , m—1),
5=0 Qx> ot

hence if we put

™t =dw‘”‘ — g (’r=0’ 1, ceey m—2)7

b ™ Vi=dg™-D 4 Hdt,

then these Pfaffians are subject to the transformation

2.2)
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- r AR
2.3) pEPe— 53 0T 4 o r=0,1, ..., m—1).
s=0 am(")i
This shows that the Pfaffians dax™* (r=0, 1,..., m—1) obey the law
analogous to ordinary differentials da“.
From (2.1), we have immediately

Fr+Da (T
(2.4) ox - =sD, azm‘ (r=0,1, ..., m—2),

ow

(2.5) @=G{D (e + Y P } (’l‘=1, 2,..., m—2>
1,2 ’

ot P oat T patem 1t 7
9T oz

@ 2T —or T (r=0,1, ..., m—1),
oxM Lrlr=1) Yl

2.7 2 =pe"D = 2) -2, 90

D T ‘ oat 2 ozt

(r=1,2,...,m—1),
where we put 0(1)=% and D, is a scalar operator of weight 1 de-

fined as follows: let f be a differentiable function on X7, then

n+l
(2.8) D.f= f " _of 2D _of fHe.

r-0 ax(r)t am(m— i

This D,f is nothing but the derivative of f along the path.

‘§3. Let +* be a contravariant vector field of weight p on X7V,
if we can determine the functions 7" and I" such that

3.1 ow'=Dp'+ '’ + pI'v*

is a vector of weight p+1, then the vector ¢, may be seen as a
covariant derivative of a vector field ¢' along the path. Now we
determine the parameters of connection I and I" by using H'’and
their derivatives. Since ¢,0' is a vector of weight p+1, so "% and
I’ are transformed as

0T Fu_ OB 2z
(3-2) -—gw*j—[v‘;——d WFJ'*‘ O‘D‘Bx—j )
(3.3) o' =T —o®,

Noticing (2.1), (2.6), (2.7), we can see that the functions defined by

i i O H? _m—2 oH'
(3.4) ‘ Fj"‘G Q™ =1 §gp(m=1Dk §4(m-2)J m Qam-1J ’
_1(2 oH! 2 o°H' }
(3.5) F.—;—’L-{—W; aw(m_l),; - m__l G ax(m-l)l ax(m—l)j ax(m—z)fl
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behave as requested. G* in (3.4), (3.5) is a contravariant tensor of
weight 2m—3 and defined in the following manner together with
covariant tensor G;; of weight —(2m —3):

o°H'
G“= (m—1) -1 1 ?
Da(m=1) glm-1)] gglm-1t

GUGﬂc=3§c » 1Gyl==0.

§4. To derive a covariant differential of the line-element, let
us begin with the proof of the

M
Theorem. If Pfaffians PY(d)= Y Pl 92" are transformed as
r=0

components of a contravariant vector of weight p, then the Pfaffians
M M
BzPi(d)z ZPgT)k bx(“-l)k + E {-Dtpgr)k'*' I P(T)'C"‘p[‘P%r)k} bw(r)k
r=0 7=0

are also transformed as components of a contravariant vector of
weight p+1,

By virtue of (2.3), (3.2) and (3.3) this can be proved without
great difficulty.

It is evident from (2.3) that oa'=bdz’ (=1, 2, ..., n) are Pfaffians
with vector character of weight 0, hence by virtue of the theorem
we see that da¢+Vi=4,(02"") (r=0,1,..., m—2) are Pfaffians with
vector charactor of weight r4+1. Therefore we may use these
0x™ (r=0,1,..., m—1) as desired covariant differentials of the
line-element. They will be represented explicitely in terms of
b as

out = dat,

4.1) { =
32 = a3 ALY ok r=1,2, ..., m=1);
s=0

then (3! are defined by the following recurrent formulas :
A= (r +-1) T+ ”'(“"2““1) rs r=0,1, ...,m—2),
7+ ” ” 7 =27 3, .0 -2
(ARG = Do)+ A+ (ThrT o)Ay (T2 5 0 ),
A% =DA%+ (I +rI67) AT (r=12,...,m-2).
(4.1) can be solved in pat as

dal=0at,
4.3)

-1
D0 = S — %QEQ}C St (,,.__=1’ 2, vees m__l)’
where
QE2yy=AG 0, (r=1,2,...,m—1),
4.4) _9.3 1
QN Y __ 2 AT g (7”— 9Oy see yM—
@4 (a)j (t)n (s)j 8=0, 1’ cees r—2).
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The transformation laws of Q3% and AZ: are given respectively
as follows:

3™ _ & 38" (a ot 0% Gaa (1=1,2,..,m—1
(4.5) = Q Qg

2™ 1f gl T 7 gy TR s=0,1, ..., r—1/,

o7 _ "l oE® o (p=12, ..., m—1
4_6 Yo A(r)i A(_r)w ( 9y ’ )
(4.6) ox aac @i Z's oa TP \g=0,1,..., r—1/.

But we notice that they are equivalent to each other.

§5. Now let us determine the covariant differential Dv* of a
vector field +* in X7 of weight p as follows:

(6.1) Dv =dv' + (! + p)dt + TM’'dak.

Making use of (3.2) and (3.3), we see that the unknown parameters
of connection Pﬁ,c are subject to the transformation

—B Y 2P0
(5.2 r CLINCY o I
) T %0 st P owoa®
By virtue of (3.2) or (2.1) and (4.5), I'%; can be defined by

| i ol F ol
(5.3) | Fh= e — 2 OB
or -
o 1 { o*H' nton  OH }
G4) | L= 1 - Dragaw 2 VB L sz on f°

Then we obtain the covariant derivatives of the second kind of a
vector field ' of weight p by decomposing its covariant differential
in terms of dt, o=* (r=0,1,...,m—1) as in the usual way:

m=1
(5.5) Dv'=(pv")dt+ 3, (Pryp')oa>
r=0
and
rv'=Du'+ 'y +pl'd,

vt

e
Vim-1yV -—m ’

(5.6)

“Fag ' (p=1,2 ..., m—2),

4___
V= Y (,,)] y 2, A G

v’ = '
i __ LY (8
VeV = ‘B?n'j‘ + I &V s§=:1 Q(o)f oD .

We must notice that the covariant derivatives po*, py0' of a vector
field ¢* of weight p is respectively of weight p+1, p—r.
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§6. The differential invariants of the connection defined in the
preceding paragraph may be easily obtained. They are the curvature
tensors of the second kind Ri,y;, Reys Ricosow (r=0,1,..., m—1);
torsion tensors of the second kind S&;%* (r=0,1, ..., m—1), S&%u
(r=0,1,...,m-=1; s=0,1, ..., r; sskm—1; t=s+1,s+2,...,m—1;
t=0 is allowed when and only when r=s=0) and their successive
covariant derivatives. Curvature tensors and torsion tensors may
be obtained geometrically by parallel displacement of a vector along
the closed infinitesimal circuit in X™;® or analytically by construc-

tion of all the commutators of the operators y and p,,; (r=0,1,...,
m—1).

§7. Let us determine the covariant differential D*v? of a vector
field v of the first kind in X%:® by the following manner:

(7.1) D¥vI=dp? +* I o7 dy*®.

The unknown parameters of connection *I'}; are transformed in
the same manner as the parameters of usual affine connection. There-
fore noticing the transformation law we can determine the *I'7; in
terms of the functions H' and their derivatives, however we deter-
mine them geometrically basing on the relations mentioned in §1
between vector fields of the first and the second kind as follows.

(i). Let the components of a vector field v” be (v', v'), then

o* is a scalar field of weight —1, hence under the geometrical
condition

(7.2) \ (D*fu])1.=0 ED’U“,
we have
(1.3) | AL =ATH=*I%=0, *[y=—T.|

(ii). As we know that v'—a®%’ is a vector field of weight 0,
setting the geometrical condition

(7.4) l (D¥07)7oi— O DF0T);_y =D (v — 2OP) + 3%, |

and noticing (7.3) we have

*I §k=F ?n ’

*[iy= I I,

*Ff)k=['§c'— ?nw(l” ’

* Iy — (@ 4 2T 4 g — I a2},

(7.5)
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Thus we have determined all the parameters of connection.

(iii). +' is a contravariant vector field of weight 0 of the second
kind when and only when ¢'=0. We know that the following
geometrical relations are identically satisfied on account of (i) and

(i):

(7.6) (D*v’)méu(;,» (D*vN);i=Dv", when 2°=0.

These results may also be obtained by using a covariant vector
field instead of a contravariant vector field in somewhat different
manner.

The covariant derivatives of a vector field v’ are obtainable by
decomposing its covariant differential (7.1) in terms of d¢ and da:

.7) D¥ol=(*07) dt +"§: (72, 07) 6.

r*of, pE et (r=0,1,..., m—1) are the covariant derivatives of the
first kind.

The differential invariants of the connection are the curvature
tensors of the first kind R*%¢; , B*Gemion (r=0,1, ..., m—1); torsion
tensors of the first kind S*(3;2" (r=0,1, ..., m—1), S*& .. (r=0,
1,...,m—1;s=0,1,...,7;sskm—1; t=s8+1,8+2,...,m—1;t=0
is allowed when and only when r=s=0) and their successive covariant
derivatives.

The relations between covariant derivatives of the first kind
and the second kind and between curvature and torsion tensors of
the two kinds are obtainable by using the geometrical conditions
(7.2), (7.4) and (7.6). The torsion tensors of the first kind coincide
identically with the torsion tensors of the second kind. The curvature
tensors of the first kind are expressible by the curvature tensors of
the second kind and the torsion temsors S&iow (r=0,1, ..., m—1).



