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23. Wiman’s Theorem on Integral Functions
of Order <—;‘ .

By Masatsugu TSUJI.
Mathematical Institute, Tokyo University.
(Comm. by T. TAKAGI, M.J.A., May 12, 1950.)

1. Density of sets.

Let E be a measurable set on the positive a-axis and E(a,bd) be
its part contained in [a,b]. We put

E(E)_—-li_mlg dr , a(E)_—_limlg dr )

e 1 J o, - T=w T dpo,

E)=Tm -1 S ar i(E)=1im—1¢S ar @
r—>00 log r B, 7 r r—>00 log r B, 1) r

7*(E)=Tm _1_8 dr | 1%(E)=lim _L—S ar (g=>1).
riae10g (/@) Jpea, »y T e 10g (1[@) g, ry T 8)

We call (1) the upper (lower) density, (2) the upper (lower) loga-

rithmic density and (8) the upper (lower) strong logarithmic density.
Evidently

0=3(E)<3(E)=1, 0=1%E)SAB)=AE)=T*(E)=1
and

(E)+6(C(E)=1, NE)+AC(E)=1, 2*(E)+I*(C(E))=1,
where C(E) is the complementary set of E. We shall prove:
Lemma 1. 0<¢(E)<i*E)=<UE)SUE)<I*E)<3E)<1.
Proof. Let §(E)=a, then for any >0,

#r)= S B

so that if 1<a<r,<r, since p(r)<r,

[ arg[ear, | s
1 r o r

B T
g,.oJr[ﬁ(rl]’ + S 1) <y +1 +(a+e)jr dr.
r r r

o

., dr < r(a+e) (r =1rie)>1),

J

)

<r,+1+(a+e)log T,
a
If r.<a<r, then similarly

S I 1 4 (a+e)log T
e,y T a
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From this we have
HE)<a=d(E).
Similarly, we can prove 8(F)<i*(E), q.e.d.

2. Main theorem.

Let f(z) be an integral function of order p(0<p<%) and
m(r)=}§’1|£§. [ f)1, M(r)=1|\£33<‘ | f)1.

Then Wiman proved that there exists 7, — oo, such that m(r,)—co.
Besicovitech and Pennycuick® proved that
S[E (log m(r)>r"~%)] = 1—2p for any >0 4)
and that there exists an integral function of any order p(0<p<1),
such that
O[E (log m(r)> —r""%)]=0 for any >0, 5)
where E (log m(r)>a) is the set of », such that log m(r)>a.
We shall prove
Theorem 1. (Main theorem). Let f(z) be an integral function of
order p(0<p<3}), then
(i) *[E (log m(r)>r"~)]=1-2p
Jor any ¢>0.

T—>00

(i) Ir Tml%M0) oo ghon
r

*[E (log m(r) >kr*)]=1—2p
for any k>0.

(ili) There exists an integral function of any order p(0<p<%), such
that

1[E (log m(r) >r*=%)]<1—2p, 0<e<p(l—2p).
(4) follows from (i) by Lemma 1.

3. Some lemmas.

Let D be a domain on the z-plane, which contains z=0 and z=co
belongs to its boundary 4. Let D, be the part of D, which is
contained in |z|<». Then D, consists of at most a countable number
of connected domains. Let D¢ be the connected one, which contains
2=0 and 6, be the part of the boundary of D?, which lies on |z|=r.

1) A. S. Besicovitch: On integral functions of order<l. Math. Ann. 97
(1927). Besicoviteh’s proof is valid only for functions of regular growth. The
general case was proved by K. Pennycuick: On a theorem of Besicoviteh: Jour.
London Math. Soe. 10 (1935). Bokjellberg: On certain integral and harmonic
functions. Thése. Upsala (1984). M. Inoue: Sur le module minimum des fonc-
tions sousharmoniques et des fonctions enti¢res d’ordre<(3. Mem. Fac. Sci. Kyusyu
Univ. ser. A. Vol. IV. No. 2 (1949).
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Then 6, consists of at most a countable number of ares {6} and let
r0(r) be the maximum of lengths of these arcs. We define §(r) as
follows. If |z|=r meets 4, then we put G(r)=0(r) and if |z|=r
does not meet A and is contained entirely in D, then we put §(r)=co.
Let u,.(z) be a harmonic funetion in D?, such that »,(z)=0 at regular
points on the boundary at D), which lies in |z| < and u.(z)=1 on
0,. Then u,.z) is the harmonic measure of 6§, with respect to DI.
I have proved in the former paper ® that

.
-\ 2 dr

u(2) < const. ¢ “ua "7, (6)

where const. is a pure numerical constant.
Let E be the set of r, such that |z|=r meets 4, then §(r)<2r for
reE and @(r)=oc otherwise, so that

Lemma 2.

_1 dr.
u,(z) < const. e 2Sm|z|, DX (r>412J).

Beurling ® proved that
dr

_%S
u,(2) <2e “Vmaan 7, )]
but since we shall use (6) latter and Lemma 2 suffices for the later
proof, we use Lemma 2 instead of (7).

Lemma 3. Let E be a closed set on the positive real axis of the
z-plane, such that

HE)>a
and u.(2) be a harmonic function in |z|<r, except on E(0,r), such
that u(2)=0 on E(0, ) at its regular points and u.(z)=1 on |z|=r.
Then

ule) < const. (1), if rzmle), 12121,

where k, is a certain constant (>1).

Proof. Since 1*(E)>a, we have if Ill_gko,
2

dr

S >alog - (z]=1),
B2, 7D P |z|

so that by Lemma 2,

2) M. Tsuji: A theorem on tbe majoration of harmonic measure and its
applications. Tohoku Math. Jour. 3 (1951).

3) Beurling: Etudes sur un probléme de majoration. Thése Upsala (1983).
M. Inoue: Une étude sur les fonctions sousharmoniques et ses applications aux fone-
tions holomorphes. Mem. Fae. Sci. Kyusyu Univ. (1943).
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u,() < const. (l’i'—)% (r=kolz], 2l =1).
T

Lemma 4. Let E be a closed set on the positive real awis of the
z-plane, such that

HE)Y>2k (0<k<P).
Then there ewists a harmonic function u(z)>0 outside E, such that
u(r)=r* on E at its regular points and

0<u(z) < comst. |z]* (lz|=1).

Proof. Let u.z) be the harmonic function defined by Lemma 3 and
v,(2) be a harmonic function outside E, such that »,2)=0 on E(0, r)
and v,(2)=1 on E—E(0, r) at its regular points. Then

v,2) S ulz) in |z|<lr.
We take k,, such that

A(E) > 2k, > 2k (ki > k),
then by Lemma 3,

|21\
v@=u@<comst. (Z)' ¢zhlzl 12120, ©
r
so that the integral
u(z)sz: v,(2) 7 A D )

converges and represents a harmonic function outside E.

Let 2=, be a regular point of £, then if z tends to », from the
outside of E, then lim v,(z)=v,(7).

27,

Since v,(z) is majorated by (8), we have by Lebesgue’s theorem,

lim u(z)=Fk S” o (r =t dr =1 S0° 1o e (10)
0

gl 0

so that u(r)=r* on E at its regular points.
Since 0=v,(2)<1, we have from (9),

o

w@) <k Sk‘"“ 1 de S oi(2) 1 dir
0

kofz|

< (k,|2|)* +const. SN (igl)k' r*-t dr=(k,|2|)*+ const. |z|’“r dt
Ioolzl

1+ky=k
ko b

r=z|t
< const. |z|". =1zl

4. Proof of the main theorem.
Let

f@) =7{“ZI(1— ; )

n

4) The expression of u(z) in the form (9) and the proof of (10) are suggested
to the author by A. Mori.
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be an integral function of order p(0<<p<%), then since

oc

11

n=1

1—_"
| |

n

gm(r)éM(T)gél(” | . |> ’

we may suppose, for the proof, that all a, are positive, so that

m(r)= 1T 1= " |=| 7|, M) =T (147 ) =f(=1), (@>0),
n=1 ay, n=1 y,
(i) Let
E=E (logm(r)<r®) (p=p—¢) (11)

and suppose that

A(E) > 2p (> 2py), 12)
so that

AE) = ME)>2p. (18)

We construct a harmonic function u(z) by Lemma 4, with k=p,,
such that u(r)=rf on E at its regular points, then
u(—R) < const. R1 (R>=1).
Since p, <p, there exists R,, such that
log M(R,) —u(—R,)=log | f(—R,)|—u(—R,) > 0.

Let u,(z) be defined as in Lemma 8, then since

log | f(r)|—u(r)=log m(r)—r* <0 on E,
we have

log| f(z) | —u(2) < log M(r)u,(2) in |z|<r,
so that by Lemma 2,

0<log | f(—Ry)|—u(—R,) < log M(ryu(—R,)

-1 ar
< const. log M(r)e * S BGRg, r/» " (r>4R),

hence
1

g I const. +log log M(r).
2 BeRg iy T

From this we have

e a2
r—>c0 ].Og r B, ) r

which contradicts (13). Hence 1*(E) < 2o, so that
[(E (log m(r) > r*~%)] = 1—2p. (14)
(ii) Suppose that
fm g M) _, (15)

r—>co fr

and let
E=E(log m(r) < kr?) (£>0) (16)
and suppose that 2X(E) > 2p.
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Then we construct a harmonie function u(z) by Lemma 4, such that
u(r)=Fkr? on E at its regular points, then by Lemma 4,
u(—R) < const. RF.

By (15), there exists R,, such that

log M(R,)) —u(—Ry)=log| f(—E,) | —u(—R)>0.
From this we proceed similarly as in (i) and we can prove that

H[E (log m(r) >kr?)] =1—2p for any k>0.
(iii) Next we shall prove that there exists an integral function of
order p(0<p< %), such that

[E (log m(r) >rt=%)] <1—2p, (0<e<p(l—2p).
Since 0<e<p(1-2p),

p—e>20>0, 1T e
20 P—e
We choose 4, such that —1:;29~>6> € __, then
2p p—e
0 1220, LA+8)(p—e)=1+s (s> 0). 1)
1+ p
Let
m+1=|:e”“2] (=1,2,...), (18)

where [x] is the integral part of x and we choose », so large that
1<m<n,<ee e <my—> 0.

Let P, be a point on the curve y=a* (k=3 >1), whose x=n,.

We connect P,, P,., by a rectilenear segment L,, whose equation is

y=aw—Pi, (19)
where
PO e RS S W W 18l (L7 (20)
Nyy1— Ny Rivr— N
so that
-—&~==’n1"77i (vt > O)’ (21)
a;
P M=) M (o), (22)
Nia1— Ny Nis1
By 19), m,<x <mn,,, is mapped on »}<y=<nf,,. Let
f(z)=ﬁ 1___z_> ) (23)
n=1 Qy,
where a/n=ain_ﬂi (')’Iﬂz g n g n£+1)'

The curve, which is composed of L, (=1, 2, ...) is called the curve
of roots of f(z) in Besicovitch’s paper.
Since L, lies above the curve y=x*,
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a,=n" (n=1,2,...), a,=ni (i=1,2,...),
so that the convergence exponent of a, is %=p, hence f(z) is an
integral function of order p and

1__"'

Ay

m(r)= ﬁ

n=1

(24)

We shall prove that
= é
A[E(1 ]S ——— < 1-—-2p.
[E(log m(r) > r*~5)] < 1+3< g

Let nt < r < n¥,,, then
r=ar—F OBr=na)

so that
‘1_I_= nTT o RTT (n=n=ny..).
ay, B, n—mn;+7,
n—____
a;

Since -T-<1 for n>mn;,;, we have by putting m=[7], if <n,,—1

An

Ap—7 |m i1 41
m('r)éngi 0. |[L@=n) I (n—7) I (n—mn+7)
n 7y m+1 7y

’n’mi F(r—m+1)11(m+1—t+1)11(’7¢)
o P(T—m)r(m"l"l_f)r(n@.,.l—ng+‘1 +77¢)
Since I'(z) has a pole of the first order at z=0, we have from (22),

I'(7,)<const. —;—gconst. n¥ii,
i
so that
g Ie—n+1) (g —7+1)
<const. n* "¢ d
m(/r)— i+l F(m...l — Ny + 1 +7¢)
L P(z'—m + 1)['(7?4.,.1 -7 +1)

<const. n B =k+1).
o bt F(m+1—n¢+1) ( )
If n,<r<n,+1, or n;,,—1=<r<mn,,,, then we have easily
m(r)<const.n, " . (25)

If n+1<r<m;,,—1, then by Stirling’s formula,
Ie—m+1D) (g —7+1)

I'(nis1—n;+1)
Sconst./ (T—’nz)(%iﬂ—'f){f—m )T—”i<ni+l_r>ni+1'7/ (mﬂ_m >"¢+1-m

Nyar—Ny e e e

o(r)=

—— —_—m. )T, _ n, -
<const.y/p, (L) T =)
(41— 'n,)"w 1™

Ny + Ny
2

Since (z—n)""(n;,, —7)"+17" attains its maximum at r,= and
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. . —_— Tr1™™
its value at 7, is (nﬁL@’) ", we have

O(r)<const.y/p,,, [ 2" "< const. ,
so that for nf<r<nk,,,

m(r)<=const. n} , (26)
or log m(r)<const. n, log n;,,<const. n}*g <nite
=n71)(1+6)(’)—8)=nk(1+5XP"3)
(1 (1 .
Hence logm(r)<r*-t for nO+*O<Lr<nk,, , (27)
so that E=E(log m(r)>r""?)
is contained in {I,}, where I,=[nf, nf9*®]. Now

> SI —Oii=k6(log n+logn,_, + - -« +log n,)<ké(log n; + (i — 1)log n,_;).

Since m,=>ni.,, we have {=O(log log n,), so that

k3
ZS —‘%?Ska(bg n,+0(log n,-,)) <kd(log n, + O(log log n,)?)
<ks(L+7)logn,, (7—0 with {—>co).

Hence if nf<r<n/0+»,
= arg 1o dry L[ dr ki Dlogn.,
IV

log» Jea,» » = logr 3= r  logrdd ¢ log r
log n} ko(L+7) logm,_ log n¥ 0
+(1-t0Bm ) i (1-08M o)+
log r klog n, log nka+® ol )+1 +6

From this we have

kY = 1 dr 0
AE)=Tm S dr— 0 -y 9.
(&) e log e g, ¢~ 146 P

5. Some remarks.
1. Let f(2) be an integral function of finite order p and D be
a domain, which contains 2=0 and z=oo lies on its boundary 4 and
log| f(2)|<klogr (zl=r, k>0) on 4. We define 8(r) for D as in §83.
Let C:|z|=a be a circle contained in D and we choose a constant K>0,
such that log| f(2)|—klog|z|—K<0on C and log M(a)+k log a + K>0.
Let 2, be a point of D, such that log|f(z,)—kloglz)— K >0 (jz)/=7r,>a).

Since log M(r) is a convex function of logr and lim—lglggl——‘m=oo
7~>00 gr
log M(r)—klog »>0 for large >0, hence by (6),

0<log| f(z)|—klog|z,|— K<(log M(r)—klog r + K)u,(z,)

‘ 5 dr
,, -
) 21,070(7)

2

<const.(log M(r)—klogr+K)e )
From this we have

(r>4ry).
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Theorem 2. Let f(z) be an integral function of finite order p
and log| f(z)|<klogr (k>0) on the boundary A of an infinite domain
D, then

A(A)=lim
r> lOog

2r S” gr =2 .

1r(r)

Theorem 3. Let f(z) be an integral function of order
p(0<p<y), then

ALE (log m(r)>klog r)]=1—2p>0 (k>0)®.
Let ¢(r) be an increasing function of r, such that T}i—n*‘%ﬂ; =oco, then
Sor any 0<p<1, there exists an integral function of order p, such
that
ALE (log m(r)>¢(r))]=0 .

Proof. The first part follows from Theorem 2, since the set
E of r, such that |z|=7r meets 4 coincides with E=FE (log m(r)<k log r)
and 6(r)<2r for reE and 0(r)=co otherwise. We shall prove the

second part. We put k—=1>1. Since Tﬁ%gl=oo, we can choose
p r—>00 r

positive integers n,;, such that 1<n,<n,<...<m—>oo0, 4+l 500 and
n.
N i
i+1
n,
R -
i+1

IOg (’ni+1)

or k_
@(ni11) =k +1n; log nyy, - (28)

With thege n;,, we construct an integral function f(z) of order p as

(23) in the proof of Theorem 1 (iii). Then for n!<r<nt,,, we have
by (26), (28),

E_
log m(r)<const. n,log n,., <¢(n;))<e(#}3,)  (0<6<1),
so that log m(r)<e(r) for nf <r<nl, .
Since

dr
SIT=(1—6) log n¥,, ’ Li=[n?,, ni.],
2

and ¢ is arbitrary, we have A[E(logm(r)<¢(r))]=1, so that
A[E (log m(r)>¢(1))]=0 .

6. Dirichlet’s problem with an unbounded boundary value.

1. Let D be a domain on the z-plane, which contains z=co on
its boundary 4 and ¢(z) be a given continuous function on 4. In
the usual Dirichlet’s problem, ¢(z) is assumed to be bounded. If
¢(2) is unbounded, there exists, in general, no harmonic function in

5) M. Inoue le. 3)
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D, which assumes the value ¢(2) on 4. We consider a special case,
where ¢(z)=7r* (z|=r, k>0) and shall prove
Theorem 4. (i) If

A(A)=Tim_ 27 S’JEL>2IC, (a=34(4)—k>0) ,
== logr J1ré(r)

then there ewxists a harmowic function u(z) in D, which assumes the
value v at regular points of A and

2r

e\ _dr_
r*<u(z)<const. e sl 6 (z|=r) in D
for any ¢>0.

" . 2r T odr
() — a 7;
@ I 44) _—rllgzo log (r/a) Sa ro(r) ~2k

then r*<u(z)<const. r* wm D .
Proof. (i) Let D?, @(r), u.(2) be defined asg in §3. Then by (6),

Irw-ﬁ

o dr
u,(2,)<const. e S ary " (2 |=10, T=41) . (29)
By the hypothesis,

nS” 4" —plogr  (k>k, r=R), (30)
17r0(r)

so that
o r
dr ﬂs 2 dr

o dr
u,(z,)<<const. e“S 1 e )1 Am=const. %eﬂs 1o (r=4r). (31)
1

Let 4, be the part of 4, which lies in |2|<7 and v,(2) be a harmonic
function in D, such that v.(2)=0 on 4, and v.(2)=1 on A—4, at its
regular points. Then

v(R)=u(2) in |z|<r, (32)
so that by (81) the integral
u(z):kS:'vr(z)r"'ldr (33)

converges and represents a harmonic function in D. We can prove
similarly as the proof of Liemma 4, that u(z)=r" on 4 at its regular
points. Hence a harmonic function u(z), which satisfies the condi-
tion of the theorem exists.

(ii). Let 2, (|2,|=1,) be any point of D. Then by (31), (32), (33),

u(2,) =kS:T°v,(z(,)fr’°‘1dr + kgjw(zo)r’““dr
o
27

7, z dr foo
ékg *re-1dy + const. e b 75?58 dr

4
14k -k
0 ary Pt

z To dr
=< (47,)* + congt. e SI ETR

K1~k
rot
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Since by (80)

e dr
eﬂgl 180 2= (210) 1 (2ry=R,) ,
we have

27'0 dr
eﬂS1 )
Since k&, is any number, such that :i(4)>k, >k, we have

1 ISZTG dr
e

1 78(r)

u(z,)<const.

Ky—k
ot

u(z,)<const.

reE

for any ¢>0.

(ili). Next we shall prove that »*<<u(z) in D. Let Vi(z) be a
harmonic function in DY, such that Vi(2)=r* (|z|=r) on the whole
boundary of D%. Then since »* is subharmonic, we have

r*<Vx(z) in D%.
Let u(z) be the harmonic funection constructed in (i), we have by
the maximum principle,
"< Vi) <R'ux(z)+u(z) in D% (R=7).

Since by (31), R*uz(z)—>0 (R—oo), we have r*<u(z) in D.
@iv). If

. 2r T odr
A¥(4)=1 - 2k
454 r“‘/;li log (rfa) Sa rﬂ(r)>

then we can prove similarly as Lemma 4,
u(z)<const. »* in D.

Hence our theorem is proved.

2. By means of the above theorem, we can prove similarly as
Theorem 1 the following theorem.

Theorem 5. Let f(2) be an integral function of finite order
p>0 and log| f(2)|<r"~t (¢>0) on the boundary A of an infinite
domain D, then

b

* 13 2n Todr
454 ;;al.% log (r/a) Sa rﬁ(r)‘g‘zp )
Compare this theorem with Theorem 2.
If f(z) is of regular growth, such that
lim log log M(r) __
e logr
then the set log|f(z)|>r"-* contains an infinite domain for any
e>0. As an application of Theorem 5, we shall prove the following
two theorems.
Tehorem 6. Let f(2) be an integral function of finite order p>>0
and A be the closed set of points, such that log| f(z)|<r"~* (|z|=r, ¢>0)

P
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and A, be the intersection of A with o half-line: arg z=0. Then
A (de)=2p.

Proof. Since log|f(z)|<r** on 4, if we apply Theorem 5 to
the outside of 4, then we have our theorem, since 6(r)=2z, when
|z|=r meets 4, and G(r)=co otherwise.

Theorem 7. Let f(2) be an integral function of finite order p>0
and M(oﬂ)=ll\/;[la§. | f(2)|. Then

A [E(log M(r)>7r°—%)]=1
Sor any e>0 and for any 0<p<eco, there exists an wntegral func-
tion of order p, such that

ALE (log M(r)>rP—8)]<1, 0<e<Min (wﬁz_ ﬁ)
’ . 1+P ) 2 .

Proof. (i). Let
E=E (log M (r)<r) (pr=p—e), (34)
then E consists of a countable number of disjoint closed intervals
I=[r,, ] (v=1,2,...) and
log|fr)|=rfr  (z|=7)
in the closed ring domain A, :r,<|z|<r) .

We construct a canal in A,, such that we take off from A, its
part:|argz|<d, r,<|z|<r, and A} be the remaining closed domain

and put A——-i A? and let D be the complementary set of A. Then

y=1
D is a connected infinite domain and log| f(z)|<r" on its boundary
A. Hence by Theorem 5

2r S’ dr

lim <2 .
s log (rfa) Ja rB(r)— "

Since 6(r)=26 for reE and 6(r)=co otherwise, we have
dr dr Lo 5,

He, ) T T

A*(E)=lim 1og‘(7/<;)‘g

go that for §—0, we have 1*(E)=0, hence
1¥LE (log M(r)>r*~*)]=1.
(ii). Next we shall prove that for any 0<p< oo, there exists an
integral function of order p, such that

JLE (log M(r)>r-9)]<1, 0<e<Min.(1p_:P, _g_)

p—e>—1i—p>0, %(1+P)(P—€)=1+s (£0).
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With this s>0, we construct an integral function f(z) of order p
as (23) in the proof of Theorem 1 (iii). Let

e e (k=%>1) , (35)
then
4 +1
M@= 1 (1+L)11 (1+ r ) ik 1+L)=111.112.113. (36)
n<n; a, n ay, n>n,£Jr1 a,
Now

INL=(2n.,)" . (37)
Since a,=am—pf;, a,,=nf, a~nii,

log IT,— n;z:IIOg (1+ ain)glog (1+ a’;ﬁ) Sni log (1+ e ")

<log (1 +Lk) + Sn“ T —de<klog n;,, + Wlog i1
n no w—ﬂ ni

<klog n,,, +const. ﬁ;% log n;.,=<const. log 7;,, . (38)
o

i+1

Similarly for j=i+1,

"yl r r r nk
1+_) 1 (1 __) 7 Jog Min
%,log( a@ Slog(1+ ,; +- oz =k

j 7

< const. r( 1 + i - log nm)g const. Lk ,
nt o nkd nk

so that

log I1,<comst. Z

v=1 nt-w

Since n,,,=>2n,, n“,,zz”'lnm, we have

k-1
log I7,< const. Z é const. < const. il
MW,y v=0 2 Ni+1 L
—const. 1 0. (39)
M 41

Hence from (37), (38), (39),
log M(r) < const. n, log n,,, < const. ni***<ni+*
=npfFre-Dpe-t for bt <r<nkl,
so that E=FE(log M(r)>r""*) is contained in {I,}, where
I,=[n}", n§*']. Since
S __(_l_/'_‘_ 210 log nk+1
Lr 14p
we have similarly as the proof of Theorem 1 (iii),
AE)=Tm- 1 S ar 20,
7->00 log/r B, T 1+P
Next suppose that 1<p<oco. We choose a rational number
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A=p|q, such that 1>p, where p, ¢ are positive integers. Then
p=p[A<1l. We construct an integral function f,(z) of order p,, such
that

- 2 2
AE (log M(r)>r-)]<1, 0< b P 40
[E (log M,(r)>r14)] a< Ttp — 205P) (40)

where Ml(r)=1\lf.[s‘3,x. | f1(2). We put z=w" and let

2mé

F@) =11 (FloD)—a)= 1T (Filow)—a) (@=eT),
M(R)=|1\g‘a=§-lf(w)l (|w|=R, |z|=r, r=R"). (41)

Then for a certain ¢ f(w) is an integral function of order p® and
M(R)=[M(r)]*** (r=mr). (42)

Since the logarithmic density is invariant for the transformation
r=R*, we have from (40), (42),

A[E (log M(R)> (q+1)R™~**)]=1[E (log M(R)>(q+1)R* )] <1.
Hence for any 0<7<1,
A[E (log M(R)>Rr-M)]1<1 . (43)
Since 771e1<7}—‘lL—>-’[i for 7—1, 2—»p, we have
At+p 2

AE (log M(R)>R")]<1
for any e<p/2. Since

2 2
Min.(—p—— , £)=J’_ for 0<p=<1,
1+p "~ 2/ 1+p or D<=

=~g— for 1<p<oo,

our theorem is proved.

6) G. Valiron: Lectures on the general theory of integral functions. p. 190.




