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13. On a Locally Compact Group with a Neighbourhood
Invariant under the Inner.automorphisms.

By Hidehiko YAIABE.
(Comm. by K. KUNG, .O.A., Feb. 12, 1951.)

Prof. H. FreudenthaP proved that a locally compact connected
group with an arbitrarily small neighbourhood invariant nder the
inner-automorphisms is isomorphic to the direct product of a vector
group and a compact group.

As an exteation of the above theorem the author will prove
the following:

Theorem. Let G be a locally compact connected group with a

fixed neighbourhood U. If U is invariant under the inner-automor-
phisms, then G contains a compact normal subgroup N such that GIN
is isomorphic to the direct roduct of a vector group and a compact
group.

Proof. Let m be the left-invariant Haar measure with a real-
valued function ,t(x) on G such that for an open set V,

m( Vx) m( Y)Z(x}.

Then A(x)= 1 because

m(U)A’x) m(Ux) m(xb m(U).

We see therefore that m is at the same time right-invariant.
Without loss of generality we may assume that U is regularly

open.
Put

N {x m(xU,.,, U--xUr’, U) 0}.

Then N coincides with the set {x; xU--- U} since U is a regu-
larly open set. Clearly N is a closed subgroup. Furthermore
N is compact and normal siace N UU-’ aad

a-xaU a-lxUa a-’Ua U.

by
Let us introduce a metric d(X, Y)’:) into the iactor group G/N

d(X, Y) m(xUyU--xUr’,yU).

Clearly this metric is left-invariant. Iioreover this is right-
invariant, for
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d(XA, YA) n(xaUyaU--xaUryaU)
m(xUayUa--xUaryUa)

m(xUyU--xUryU)
d(X, Y).

Hexce by the Freudenthal’s theorem) GIN is isomorphic to the
direct product of a vector group and a compact group, which com-
pletes the proof.

Corollary,. Under the assumption of the theorem the closure of
the commutator subgroup of G is compact.’

Added in proof. Dr K. Iwasawa kindly informed to the author
that he had proved the same theorem independently.
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