12. On Riemannian Spaces Admitting a Family of Totally Umbilical Hypersurfaces. II.

By Tyuzi Adati.

(Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1951.)

§ 4. When orthogonal trajectories of the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are geodesics, (1.2) reduces to the form

$$\sigma_{\lambda}, \, \mu = \rho g_{\lambda \mu} + \eta \sigma_{\lambda} \sigma_{\mu} \,,$$

namely σ_{λ} is a torse-forming vector field. In this case, since v_{λ} is proportional to σ_{λ} and consequently $v_{i} = v_{\lambda}B_{i}^{\lambda} = 0$, (1.6) becomes

$$R_{jk} = B_j^{\mu} B_k^{\nu} R_{\mu\nu} + \beta g_{jk}.$$

Thus we have

Theorem 4.1. When orthogonal trajectories of the totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are geodesics, in order that the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are Einstein spaces, it is necessary and sufficient that the tensor $\Pi_{\lambda u}$ takes the form

$$\Pi_{\lambda\mu} = ug_{\lambda\mu} + \zeta_{\lambda}\sigma_{\mu} + \zeta_{\mu}\sigma_{\lambda}.$$

Cor. 1. If σ_{λ} is a torse-forming vector field and $\Pi_{\lambda\mu} = ug_{\lambda\mu} + \kappa\sigma_{\lambda}\sigma_{\mu}$, then the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are Einstein spaces.

Cor. 2. If an Einstein space admits a torse-forming vector field σ_{λ} , then the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are also Einstein spaces.

We consider next a conformally flat space admitting a torseforming vector field.

Differentiating (4.1) and substituting the resulted equations in Ricci identities $\sigma_{\lambda;\mu\nu} - \sigma_{\lambda;\nu\mu} = -\sigma_{\omega} R^{\omega}_{\lambda\mu\nu}$, we have

$$(4.2) \quad -\sigma_{\omega}R^{\omega}_{\lambda\mu\nu} = (\rho_{\nu} - \rho_{\eta}\sigma_{\nu})g_{\lambda\mu} - (\rho_{\mu} - \rho_{\eta}\sigma_{\mu})g_{\lambda\nu} + \sigma_{\lambda}(\eta_{\nu}\sigma_{\mu} - \eta_{\mu}\sigma_{\nu}).$$

Multiplying by σ^{λ} and summing for λ , we have

$$(\rho_{\nu}+\sigma^{\lambda}\sigma_{\lambda}\eta_{\nu})\sigma_{\mu}-(\rho_{\mu}+\sigma^{\lambda}\sigma_{\lambda}\eta_{\mu})\sigma_{\nu}=0\;,$$

from which follows that $\rho_{\nu} + \sigma^{\lambda} \sigma_{\lambda} \eta_{\nu}$ is proportional to σ_{ν} , that is, $\sigma^{\lambda} \sigma_{\lambda} \eta_{\nu} = a \sigma_{\nu} - \rho_{\nu}$, where a is a certain scalar. On the other hand, multiplying (4.2) by $g^{\lambda \mu}$ and summing for λ and μ , we have

$$-\sigma_{\omega}R^{\omega}_{\cdot,\nu} = (n-1)(\rho_{\nu} - \rho_{\eta}\sigma_{\nu}) + \sigma^{\lambda}\sigma_{\lambda}\eta_{\nu} - \sigma^{\lambda}\eta_{\lambda}\sigma_{\nu}$$
$$= (n-2)\rho_{\nu} + \{\alpha - (n-1)\rho_{\eta} - \sigma^{\lambda}\eta_{\lambda}\}\sigma_{\nu}.$$

Thus we obtain the equations of the form

$$\sigma_{\omega}\Pi^{\omega}_{\cdot,\nu} = \rho_{\nu} + b\sigma_{\nu}$$
,

where

$$b = \frac{1}{n-2} \left\{ \frac{R}{2(n-1)} + a - (n-1)\rho_{\eta} - \sigma^{\lambda} \eta_{\lambda} \right\}.$$

However, by virtue of $C^{\lambda}_{\cdot \mu \nu \omega} = 0$,

$$\begin{split} -\sigma_{\omega}R^{\omega}_{\;\;\lambda\mu\nu} &= \Pi_{\lambda\mu}\sigma_{\nu} - \Pi_{\lambda\nu}\sigma_{\mu} + g_{\lambda\mu}\sigma_{\omega}\Pi^{\omega}_{\;\;\nu} - g_{\lambda\nu}\sigma_{\omega}\Pi^{\omega}_{\;\;\mu} \\ &= (\Pi_{\lambda\mu} + bg_{\lambda\mu})\sigma_{\nu} - (\Pi_{\lambda\nu} + bg_{\lambda\nu})\sigma_{\mu} \\ &+ \rho_{\nu}g_{\lambda\mu} - \rho_{\mu}g_{\lambda\nu} \;. \end{split}$$

Comparing with (4.2), we have

$$\begin{split} \Big\{ \Pi_{\lambda\mu} + (b + \rho\eta) g_{\lambda\mu} - \frac{1}{\sigma^{\omega} \sigma_{\omega}} \sigma_{\lambda} \rho_{\mu} \Big\} \sigma_{\nu} \\ - \Big\{ \Pi_{\lambda\nu} + (b + \rho\eta) g_{\lambda\nu} - \frac{1}{\sigma^{\omega} \sigma_{\omega}} \sigma_{\lambda} \rho_{\nu} \Big\} \sigma_{\mu} = 0 \; . \end{split}$$

Consequently $\Pi_{\lambda\mu}$ takes the form

$$\Pi_{\lambda\mu} = ug_{\lambda\mu} + \zeta_{\lambda}\sigma_{\mu} + \zeta_{\mu}\sigma_{\lambda}.$$

Hence from the theorem 4.1 we know that the hypersurfaces $\sigma = \text{const.}$ are Einstein spaces. However since the totally umbilical surface in a conformally flat space is also conformally flat, the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are conformally flat and consequently of constant Riemann curvature. Thus we have

Theorem 4.2. When a conformally flat space admits a torse-forming vector field σ_{λ} , the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are of constant Riemann curvature (n > 3).

§ 5. The fundamental quadratic differential form of the space admitting a torse-forming vector field is given by the form²⁾

(5.1)
$$ds^{2} = \rho(x^{\lambda})^{-2} f_{ij}(x^{k}) dx^{i} dx^{j} + (dx^{n})^{2}$$
$$(i, j, k = 1, 2, \dots, n-1),$$

for a suitable coordinate system. Consequently the fundamental tensor becomes

$$g_{ij} =
ho^{-2} f_{ij} \;, \qquad g_{in} = 0 \;, \qquad g_{nn} = 1 \;,$$
 $g^{ij} =
ho^2 f^{ij} \;, \qquad g^{in} = 0 \;, \qquad g^{nn} = 1 \;,$

where $f^{ij}f_{jk} = \delta^i_k$.

The fundamental tensor \overline{g}_{ij} of the hypersurfaces $x^n = \text{const.}$ is equal to g_{ij} . If we denote the Christoffel symbols of the second kind, curvature tensor, Ricci tensor and scalar curvature with

respect to \overline{g}_{ij} by $\{i_{jk}\}$, \overline{R}_{jkl} , \overline{R}_{jk} and \overline{R} respectively, we have from (5.1) the next equations:

(5.2)
$$\begin{cases} {n \choose nn} = {i \choose nn} = {n \choose in} = 0, \\ {n \choose jk} = \rho_n g_{jk}, & {i \choose jn} = -\rho_n \delta_j^t, \\ {i \choose jk} = {\overline{i} \choose jk} = {i \choose jk}^* - \delta_j^t \rho_k - \delta_k^t \rho_j + f^{il} f_{jk} \rho_l, \end{cases}$$

where $\rho_{\lambda}=rac{\partial\log\rho}{\partial x^{\lambda}}$ and $\left\{ i\atop jk
ight\}^{*}$ are Christoffel symbols with respect to f_{ii} ;

$$\begin{cases}
R^{n}_{\cdot mil} = R^{n}_{\cdot nkl} = 0, \\
R^{n}_{\cdot jnl} = \rho \left(\frac{1}{\rho}\right)_{nn}g_{jl}, \quad R^{n}_{\cdot mil} = -\rho \left(\frac{1}{\rho}\right)_{nn}\delta^{i}_{l}, \\
R^{n}_{\cdot jkl} = \frac{\partial \rho_{n}}{\partial x^{i}}g_{jk} - \frac{\partial \rho_{n}}{\partial x^{k}}g_{jl}, \\
R^{i}_{\cdot nkl} = -\frac{\partial \rho_{n}}{\partial x^{l}}\delta^{i}_{k} + \frac{\partial \rho_{n}}{\partial x^{k}}\delta^{i}_{l}, \\
R^{i}_{\cdot jnl} = \left(\delta^{i}_{l}\delta^{k}_{j} - g^{ik}g_{lj}\right)\frac{\partial \rho_{n}}{\partial x^{k}}, \\
R^{i}_{\cdot jkl} = \overline{R}^{i}_{\cdot jkl} - \rho^{2}_{n}\left(g_{jk}\delta^{i}_{l} - g_{jl}\delta^{i}_{k}\right),
\end{cases}$$

where $\left(\frac{1}{\rho}\right)_n = \frac{\partial}{\partial x^n} \left(\frac{1}{\rho}\right), \left(\frac{1}{\rho}\right)_{nn} = \frac{\cdot \partial}{\partial x^n} \left(\frac{1}{\rho}\right)_n;$

(5.4)
$$\begin{cases} R_{nn} = -(n-1)\rho\left(\frac{1}{\rho}\right)_{nn}, \\ R_{jn} = (n-2)\frac{\partial\rho_n}{\partial x^j}, \\ R_{jk} = \overline{R}_{jk} - g_{jk}\left\{\rho\left(\frac{1}{\rho}\right)_{nn} + (n-2)(\rho_n)^2\right\}; \end{cases}$$

(5.5)
$$R = \overline{R} - (n-1) \left\{ 2\rho \left(\frac{1}{\rho} \right)_{nn} + (n-2) (\rho_n)^2 \right\};$$

(5.6)
$$\begin{cases} \Pi_{nn} = \frac{\bar{R}}{2(n-1)(n-2)} + \rho \left(\frac{1}{\rho}\right)_{nn} - \frac{1}{2}(\rho_n)^2, \\ \Pi_{jn} = -\frac{\partial \rho_n}{\partial x^j}, \\ \Pi_{jk} = -\frac{1}{n-2} \left(\bar{R}_{jk} - \frac{\bar{R}}{2(n-1)}g_{jk}\right) + \frac{1}{2}(\rho_n)^2 g_{jk}; \end{cases}$$

$$\begin{cases}
C_{\cdot mnl}^{n} = C_{\cdot nkl}^{n} = C_{\cdot jkl}^{n} = C_{\cdot nkl}^{i} = C_{\cdot jnl}^{i} = 0, \\
C_{\cdot jnl}^{n} = \frac{1}{n-2} \left(\overline{R}_{jl} - \frac{\overline{R}}{n-1} g_{jl} \right), \\
C_{\cdot mnl}^{i} = -\frac{1}{n-2} \left(\overline{R}_{\cdot l}^{i} - \frac{\overline{R}}{n-1} \delta_{l}^{i} \right), \\
C_{\cdot jkl}^{i} = \overline{R}_{\cdot jkl}^{i} - \frac{1}{n-2} \left\{ (\overline{R}_{\cdot l}^{i} g_{jk} - \overline{R}_{\cdot k}^{i} g_{jl} + \overline{R}_{jk} \delta_{l}^{i} - \overline{R}_{jl} \delta_{k}^{i} \right) \\
- \frac{1}{n-1} \left(\delta_{l}^{i} g_{jk} - \delta_{k}^{i} g_{jl} \right) \right\};
\end{cases}$$

$$(5.8) \begin{cases} \Pi_{ni;j} - \Pi_{nj;i} = 0 ,\\ \Pi_{nn;i} - \Pi_{ni;n} = \frac{1}{2(n-1)(n-2)} \frac{\partial \overline{R}}{\partial x^{i}} ,\\ \Pi_{ij;n} - \Pi_{in;j} = -\frac{\rho_{n}}{n-2} \left(\overline{R}_{ij} - \frac{\overline{R}}{n-1} g_{ij} \right) \\ -\frac{1}{n-2} \frac{\partial}{\partial x^{n}} \left(\overline{R}_{ij} - \frac{\overline{R}}{2(n-1)} g_{ij} \right) \\ + \frac{\partial}{\partial x^{n}} \left(\rho_{i+j} - \rho_{i} \rho_{j} + \frac{1}{2} g^{ki} \rho_{k} \rho_{i} g_{ij} \right) ,\\ \Pi_{ij;k} - \Pi_{ik;j} = -\frac{1}{n-2} \left\{ \overline{R}_{ij} - \frac{\overline{R}}{2(n-1)} g_{ij} \right\}_{ik} \\ + \frac{1^{\bullet}}{n-2} \left\{ \overline{R}_{ik} - \frac{\overline{R}}{2(n-1)} g_{ik} \right\}_{ij} , \end{cases}$$
where ρ_{ijk} are covariant derivatives with respect to \overline{q}_{ij} .

where $ho_{i \mid j}$ are covariant derivatives with respect to \overline{g}_{ij} .

When n > 3, we get from (5.7) readily

Theorem 5.1. In order that the space admitting a torse-forming vector field σ_{λ} is conformally flat, it is necessary and sufficient that the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are of constant Riemann curvature (n > 3).

Now we consider (5.8). Without loss of generality, we may suppose that $\rho(x^i, x_0^n) = 1$ for some value x_0^n of x^n . Consequently the fundamental tensor of the hypersurface $x^n = x_0^n$ is given by f_{ij} . By a conformal transformation $g_{ij} = \rho^{-2} f_{ij}$, we have

(5.9)
$$\left\{ \begin{array}{l} \overline{i} \\ jk \end{array} \right\} = \left\{ \begin{array}{l} i \\ jk \end{array} \right\}^* - \delta_j^i \rho_k - \delta_k^j \rho_j + f^{il} \rho_l f_{jk} , \\ \overline{R}^i_{jkl} = R^{*i}_{jkl} + \rho_{jk}^* \delta_l^i - \rho_{jl}^* \delta_k^i + f_{jk} f^{im} \rho_{ml}^* - f_{jl} f^{im} \rho_{mk}^* , \end{array}$$

where $R^{*i}_{.jkl}$ is a curvature tensor with respect to f_{ij} and

$$ho_{jk}^* = rac{\partial
ho_j}{\partial x^k} - \left\{ egin{aligned} l \ jk \end{aligned}
ight\}^*
ho_i +
ho_j
ho_k - rac{1}{2} f^{il}
ho_i
ho_l f_{jk} \,.$$

Hence we have

$$(5.10) \bar{R}_{jk} = R_{jk}^* + (n-3)\rho_{jk}^* + f^{lm}\rho_{lm}^* f_{jk},$$

$$(5.11) \bar{R}\rho^{-2} = R^* + 2(n-2)f^{lm}\rho_{lm}^*,$$

where $R_{jk}^* = R_{jki}^{*i}$, $R^* = f_{jk}^{jk}$. Furthermore, from (5.9) we have

$$egin{aligned}
ho_{i+j} &\equiv rac{\partial
ho_i}{\partial x^j} - \left\{ egin{aligned} \overline{l} \ ij \end{aligned}
ight\}
ho_i \ &= rac{\partial
ho_i}{\partial x^j} - \left(\left\{ egin{aligned} l \ ij \end{aligned}
ight\}^* - \delta_i^l
ho_j - \delta_j^l
ho_i + f^{lm}
ho_m f_{ij}
ight)
ho_i \;, \end{aligned}$$

from which follows

(5.12)
$$\rho_{i|j} - \rho_i \rho_j + \frac{1}{2} g^{kl} \rho_k \rho_i g_{ij} = \rho_{ij}^*.$$

Let us suppose that V_n is comformally flat. Since the hyper surfaces $x^n = \text{const.}$ are Einstein spaces, we have

$$\overline{R}_{ij} - \frac{\overline{R}}{2(n-1)} g_{ij} = \frac{\overline{R} \rho^{-2}}{2(n-1)} f_{ij}.$$

Differentiating with respect to x^n ,

$$\frac{\partial}{\partial x^{n}} \left(\overline{R}_{ij} - \frac{\overline{R}}{2(n-1)} g_{ij} \right) = \frac{1}{2(n-1)} \frac{\partial}{\partial x^{n}} (\overline{R} \rho^{-2} f_{ij})$$

$$= (n-2) \frac{\partial}{\partial x^{n}} \left(\frac{1}{n-1} f^{lm} \rho_{lm}^{*} f_{ij} \right).$$

Substituting (5.12) and (5.13) in (5.8), we obtain

$$\Pi_{ij;n}-\Pi_{in;j}=\frac{\partial}{\partial x^n}\left(\rho_{ij}^*-\frac{1}{n-1}f^{lm}\rho_{lm}^*f_{ij}\right)=0,$$

from which follows the equations of the form

(5.14)
$$\rho_{ij}^* - \frac{1}{n-1} f^{lm} \rho_{lm}^* f_{ij} = F(x^i),$$

where $F(x^i)$ is a certain function of x^i . However, when $x^n = x_0^n$, by virtue of $\rho_i = 0$ and $\rho_{ij}^* = 0$, the left-hand member of (5.14) vanishes and the right-hand member does not involve x^i . Consequently (5.14) becomes

(5.15)
$$\rho_{ij}^* = \frac{1}{n-1} f^{lm} \rho_{lm}^* f_{ij}.$$

In this case, the vector field ρ_i of the hypersurfaces $x^n = x_0^n$ is a concircular one.

Moreover, we note that when n > 3 and the hypersurfaces $x^n = \text{const.}$ are all Einstein spaces, (5.15) may be reduced from (5.10).

In the case when n=3, if V_3 is conformally flat, from (5.8) we know that \overline{R} is a function of x^3 alone and consequently the hypersurfaces $x^3 = \text{const.}$ are of constant Riemann curvature. Furthermore we get the relations (5.15). Hence we have

Theorem 5.2. In order that V_3 which admits a torse-forming vector field and whose fundamental quadratic differential form is given by (5.1) is conformally flat, it is necessary and sufficient that the hypersurfaces $x^3 = \text{const.}$ are of constant Riemann curvature and the relations (5.15) hold, assuming $\rho(x^i, x_0^3) = 1$.

Furthermore from (5.8) we have

Theorem 5.3. In a space admitting a torse-forming vector field σ_{λ} , if the hypersurfaces $\sigma = \text{const.}$ are all Einstein spaces, then we have

$$\Pi_{\lambda u \cdot \nu} - \Pi_{\lambda \nu \cdot u} = 0 \qquad (n > 3)$$
.

References.

- 1) K. Yano: Concircular Geometry I. Proc. Imp. Acad. Tokyo, 16 (1940), 195-200.
- 2) K. Yano: On the Torse-forming Directions in Riemannian Spaces. Ibid. **20** (1944), 340-345.