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I. E. Segal has proved that a state of a C*-algebra is the
normalizing function of some normal representation (ef. [2]V).
(C*-algebra is a uniformly closed self-adjoint operator algebra on a
Hilbert Space, in the terminology of I. E. Segal.) Applying the
Reduction Theory of J. von Neumann (cf. [1]) for this theorem,
we can see that a state of a separable C*-algebra is a directed
integral of a system of pure states, and we can see a similar
result for trace instead of state (the terminologies of state, pure
state and trace ete. are of I. E. Segal [2] and M. Nakamura [3]
respectively). This is a Theorem of Bochner’s type in *-algebra.
From this, we can easily see by a topological method the Bochner’s
Theorem for a separable locally compact group. (Recently, this
theorem has been shown by F. I. Mautner [6].)

M. Nakamura [3] has introduced the two-sided representation
of a C*-algebra which is a generalized form of double unitary
representation in the sense of R. Godement [8]. From his for-
mulation, we can see that a two sided representation of a C*-algebra
is a directed integral of a system of irreducible two-sided represen-
tations. From this fact and the Bochner’s Theorem, any two-
sided continuous unitary representation in a separable unimodular
locally compact group is a directed integral of a system of irreducible
two sided continuous unitary representations, it follows the same
type theorem of F. I. Mautner [6] for one-sided continuous unitary
representation of the group.

We shall describe in this paper only on a weight function «(2)
which generates the irreducible factors. But it may be possible
to prove a decomposition for any N-function in the sense of von
Neumann (cf. [1]) as a weight function.

Throughout this paper, we shall assume the separability axiom,
because we shall use the Reduction Theory of J. von Neumann.

1. A Bochner’s type Theorem in a O*-algebra. Recently, the
Theorem of this type has been proved for the case of non-separable
central C*-algebra by M. Nakamura—Y. Misonou [4], and for the

1) Number in Bibliography at the end of this paper.
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case of commutative *-algebra by R. Godement [9]. In this section,
we shall prove this theorem for any separable C*-algebra.

Let A be a separable C*-algebra. A state" of 2 is a complex-
valued bounded linear funectional on ¥ such that o(x*) is the complex
conjugate of w{x), e(x*x) >0 for all x€ A and sup w(@*z)=|lw||(=
sup |e(x)|). A state -(x) is a trace if r{xy) = r(yx) for all z, ye A.
A gstate (resp. trace) X(x) is pure if it is not a linear combination
with positive coefficients of two other states (resp. traces). A C*-
algebra or a L -algebra of a locally compact group has sufficiently
many pure states (cf. [2]). On the case of the trace, it has been
discussed in a central C*-algebra by M. Nakamura—Y. Misonou [4]
and in a central group by R. Godement [10].

Theorem 1. Let w(x) be a state (resp. trace) on A. Then
(1) o@) = | Xz, Ddo(d)

where o(2) ts a suitable bounded real valued non-decreasing right
continuous function on real line R which is a N-function of the sense
of J. von Neumann [1], and X(x, 2) is a pure state on U for almost
every A in R with respect to o(1)-measure.

Proof. Let & be a set of xe U such that e(yx) =0 for all
ye 9, then K is a closed left-ideal in U. Hence we can make the
factor space [A] = A/RK, we shall denote by [x] the class containing
2. Define

(2) (vl [2) = o(z™ y)

for «, y of %, then (2) is an inner product in [¥A]. Let $ be the
completion of [¥A] by the norm ||[x]|* = ([#], [#]). Then 9 is a
separable Hilbert space, and the mapping from x of %A to [x] of $ is
continuous. We shall define a representation of % on § by the
following way:

v—>U,:  Ulyl = [wyl
Then, by the Theorem of I. Segal [2], the state w(x) be represented
by
(3) o(@) = (UE, §)
for some element £€ . Let 4 be a maximal commutative self-

adjoint subalgebra of M’ which is the commutor of M == {U.|x € A}.
The decomposition of $ and M with respect to 4 be

1) It can be seen that every positive bounded linear functional on % is a
state in our sense, because it satisfies the Schwarz’ inequality and ¥ has an ap-
proximate identity.
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p=[o0dl, M~ ME

where o) is a weight function generated by 4. By the theorem
of F. Mautner [7], almost every 9, is irreducible under M(2). We

denote ¢ = j 5; Vdo(d) and U, ~SJU,(2) for £€ H and xz€A. Then
we have

(4) UL &) = j (U8, &)do(d),

and put x(z, ) = (U )&, &) a.e. o(d)-measure. By the Reduction
Theory of von Neumann, for the decomposition

U, ~>SUL% and U,~ U4
we have
ny = Uny ~ 2 ny(a)’ -~ 2 Ux(i) Uy(l) 3

(5 ) Ux* = Uwx ~ E Ux*(l)y ~ E Ut*(l)

and the decomposition is unique for all z, y € A except for a set of
o()-measure zero, since 2 is separable. It follow that almost all
2 {U.(2), 9} is an irreducible representation of 9, and X(z, 2) is a
normalizing function of {U.(#), D.}. Hence almost all 1 x(z, ) is a
pure state. Thus we have the relation (1) for the case of state.

Remark 1. Theorem 1 can be also hold for a case that a
complete normed*-algebra with an approximate identity and a state.
For, in such a *-algebra.

oly*crry) <lim||(@*2)" [ "oly*y) < || 2| oly*y)

and therefore || Uyl || ||« | w]l], or [[| U.lll Z|l«|| where ||[-]]| is
the operator norm. Since a.e. o) ||| U.W) || Z Il U.]ll, a.e. o(2) the
representations {U.(2), .} are continuous. (It is known that any
representation of a B*-algebra is necessarily continuous, and from
above fact it also hold in our case.) It can be séen by the same
way on the case of C*-algebra that a state is a normalizing function
of the corresponding representation and conversely a normalizing
function of a normal representation is a state. Thus, Theorem 1
be held for any such an algebra. This fact will be used for the
proof of the Bochner’s Theorem in a topological group (Theorem 3,
below).

2. On a decomposition of a two.sided representation of a
C*.algebra. The two-sided representation of a C*-algebra has been
introduced by M. Nakamura [3], it is a general case for a locally
compact group introduced by R. Godement (cf. [8]) which he has
called double unitary representation.
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An involution j is a conjugate linear transformation on a Hilbert
space P of preriod two onto itself with (j&, jn) = (n, &) for any
&,ned. {U,, V., 7, D} is a two-sided representation of a C*-algebra
A, if x> U, is a usual representation and — V, is a dual re-
presentation :

(6) sz= Vsz, UuVy‘:—' VQ,U}; and V:: =jUJj.

M. Nakamura has proved that a C*-algebra with a trace has a
normal two-sided representation. We have

Theorem 2. A normal two-sided representation of a reparable
C*-algebra is o directed integral of a system of irreducible two-sided
representalions’.

Proof. Let {U., V., j, D} be a two-sided representation, and
A be a maximal commutative self-adjoint subalgebra of M' such
that every element A of A4 satisfying jAj = A*, where M is
a commutor of M= {U,, V,|x, yeA}. By the same way in
Theorem 1, decompoge $, U, and V, with respect to A:

9= j@),/&;(i), U~SIU) and Vo~ V.03).
V=V, Vi~2 VD), ~ZV,DV.0).
UV, =V,U~2ZV.QV,@), ~2V,ADU).
Vo= Va~3Vudd), ~2V(d).

and the decomposition is unique (a.e. o(d)) for all x, ¥ € Y since A
is separable, and therefore

Vo = V,Q V.03, Veld) = V.*@A),
Uz(l) Vy(j) = Vy(a)U ;(3)

for all z, ¥ €U (a.e. o(2)). We have already proved in Theorem 1
that {U.(4), $.} is a usual representation (a.e. o(1)). Now we shall
research j(2) which is a component on 9, of the decomposition of
J» and prove -that j(2) is our involution on $, (a.e.s()). For any
g€, denote & = sfu/ do(d) and j& = ICAV'ZZFX) and define j(2) such
as

i@ : & =730E, a.e. a(d).

The decomposition j~7j(4) be possible becouse A* =jAj for all
Aed.

Since (¢, jn) = (v, &) for arbitrary &, 7€ 9,

1) A two-sided representation {U,, V., j, $} is irreducible if no proper sub-
space of § exists which is invariant under U,, V., (x€ %) and j (cf. [3))
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| @, i@mde@) = [ on, &)dod

and (j§, 7Bn) = (B, ¢) for any bounded operator B on 9.
Let #(2) be a bounded real valued o(4)-measurable function on R
and we define a bounded operator B,:

(7) B, = [ ol do)
where

N = f%v’%ﬁ), then B, is a bounded operator on 9.

Therefore, for any bounded real valued o(2)-measurable function
(%)

®) [ o060, iwnden={ g0, £)doa.

However, any bounded complex o(4)-measurable function ¢(2) is
decomposed into ¢, and ¢, (real) such that ¢$1) = @,(2)+ig.(2), and
therefore (8) holds for any such function ¢(2) on R. Hence we
obtain

&, JM) = (M, &), a.e. o(d).
Since U is separable, for all x e ¥
JAUIRA) = Vi), a.e. o(d).

By Mautner’s Theorem, almost all 2, $, are irreducible under
M(2). Hence a.e. o(d) {U.(2), V.(3), 5(3), H,} are irreducible two-
sided representations and its directed integral with respect to
o(2)-measure is {U., V., j, }.
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