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88. On the Asymptotic Distribution o] the Sum of
Independent Random Variables.

By Shigeru TAKAHASHI.

(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1951.)

1. Let {X} i--1, 2, be a sequence of independent
random variables defined in a probability space (2, F, P). The
so-called central limit theorem) states that when a sequence {X}
satisfies certain conditions then

lira P v/:--n-----

_
() a e-’’ du G(a) (I)

where ,- denotes suitably normalized variable. Concern-
ing this theorem we consider ollowing two generalizations

1 Replace a constant upper limit a of summation by a
measurable unction g() defined in .2.

2 Replace the number n of random variables of summation
by a random unction ,,() defined in 2.

On these generalizations many theorems have been proved).
Let {X} be a sequence of independent random variables satisfying
the central limit theorem (I). For any real numbers a and b, we
define the sets ’.,=[;aX()b] and denote by $’ the
smallest Borel field which includes all the sets El,.,, defined or any
a, b and i 1, 2, We complete P with respect to the measure
P and denote it by . In 3 we prove the following:

Theorem 1. If Ee , then

lira P -= X () a, P(E)G(a).

In order to prove this theorem we show some lemmas in 2,
and in 4 we consider the above generalizations by using Theorem I.

To define and to discuss the problems on {}, it is sufficient
to consider the probability space (2, F, P) as (2, R, P). So the
theorems proved in 4 give the answer of the above generalizations
or independent sequence.

2. First of all we consider a sequence {X} which satisfies
ollowing conditions:
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1. {X} is an independent sequence.
2. {X} satisfies the central limit theorem (I).
3 For each i, the set of values which X takes is at most

enumerable.
Let a be the values which .X takes. Put P P [X a.],

A. ----[; X a] and F the smallest Borel field which includes
all the ses A k=1,2, i=l, 2, We assume that’P
is a non-increasing sequence o k for each i. Then (, F, P) is
also a probability space. For any sequence (finite or infinite)of
integers i, i, i we define the set

A., , %--Y A,.
Then, rom the independency

P ,, ..., ,,) A.
p(X=a)=

I or some infinite sequence i, i, ..., i,,, ..., P (A, :,..., ,, )

( 1 1 )=p This con-=P0, then limP /=X= a,
tradicts with the assumption 2.

Hence for any infinite sequence i, i, i,

P (A,, ., ,,, 0.

and A,, :;,..., s, it is seen(A) For any two sets A,,...,
1. If there exists at least one k such that k

_
m, n and i, 4=j,

then A, ...,..., , fl A;, ,..., ;=0, where 0 denotes the empty set.
2 If m=n and i,=j for all km=n, then

3 If m=n and i=j or all k__m, then

A,, ,., , A,, , .
Next we define a probability space (T, B, m) as follows"

1 T is the interval [0.1.
2. B is the class of B-measurable sets in [0,1.
3. m’is Lebesgue measure.

for any sequence of integers ,.In T we define the set E,,, :, , ....

2. If E, , ,.., has been defined and the interval [d,, d:
denotes then

L
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From the above construction and (II)

m(E,, ,.., ,)----I/xP=P(A,,_ ..,.., ,,) for all il, i,.., i.. (IV)

For any infinite sequence i, i,.., ,,...
m (E.,,, ,,,.., ,...) O. (V)

By (V), it is seen that the smallest Borel field which includes all
the sets .g), , ,. is identical with the class B.

(B)- For any two sets E, ,, .., . and E, :;, .., ., it is seen
1. If there exists at least one k such that ij,,, km, n, then

E+,, ,, .,: , , :;, .., O.
2 If m=n and i=]+, for all km=n, then

-E+
3. If mn and i=jor all km, then

E, , E,, , +.,.
By (A) and (B) we can define a transformation rom B to

F as ollows". (o) =o.
for all i, i,. i2 (E., :,.., ) A, ,.., :

3 Ee B.E, ( ,),

From 1-3 it follows that
4 (=2 and (E)=(T)-(E) where E denotes

the complement of E.

5 + E =+(Eg,
1 l

B (V) be properie o , i olIow
o. ff be (E)s o () e(()),
o. ff yo be -() (- ()) ().

bu e6e eueee Y()} epee. or, ()

where eoe be ummio or H poible eombiio o

l PP:,
klk ki-.
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Hence m Y (t) a, 1! m (Y (t) a.) for all n. By the fact

ha () akes on ,, , ..., he sme wlue as ha Xks on
Ah, , ..., and by he properties o i is seen or M1 h

Hence m Y(t)a =P EX+()a

so lim m Y (t) a lim P ()

().
Lemm l. I Eel, hen

limm Y(t)a E =m(E) G(a)

Proo+. For any finite sequence of integers i,, i+, i+

( )

)

lim,,+ m /= N+. Y+ (t)

_
a m (Eq,. +,..., +) G (a) m (E+,, ++,..., +).

Now let M denote the family of sets E which satisfy the following
relation

lim m Y(t)a, E =m(E) G(a).

Then, about M it is seen that"

1. M includes E, ,, for all , ,, (1 1, 2, ).
For a finite sequence i, i, i we have proved above, but for
infinite sequence it is evident from (V).

2. If EE and E, EeM, then E--EeM.

Nor, limm /(Oa,

( ) ( )Y,(t)a,,,.lim m. ,, Y (t) a, E ,.lim m ,/,,
G (a) m (E) --G (a) m (E) = G (a) m (E’-E).
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3. If E--- L/&, & e M and A, &, are non-overlapping (3"
then E s M.

For, lim, m /., :F (t)

_
a, E

(VI)

For all n, (1 )0_ m

and ] m (A) m (E).

Hence the convergence of m . Y () a, & is unifom
,.:

o (VI). We have therefore

(VI) lim m Y, (t)a, & G(a)m (a) G (a)m (E).

By 1--3 and the aet that m denotes Lebesgue measure, it follows
that M includes all sets of B.

We complete F with respect to the measure .P and denote it by .
Lemma 2. If EeF,

hen limP =X() N =P(N) G(a)

Proof It is sufficient to prove this lemma for the case E e F.
Hence

3. In this paragraph, we prove the theorem mentioned in 1.
Let {X} be a sequence of independent random variables satisfying
the central limit theorem (I).

Now, let (h,,,) (i=l, 2 k----0,:l, +2, ) be a se-
quence of real numbers satisfying the following conditions"

1. h,,>O for k>O, h,,<O for k<O.
h,=O for k=O.

2 (h,)h for all k and _]h 0(V’n)(n-oo).
i=1

8. .:o>- h,= +o 0:h,=-- oo for each i.

Using this sequence (h,), we define a sequence of random vari-
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ables {Z, (to)} (i 1, 2, ) as follows

k=O kO

or n=0, 1, 2, i=1,2,
Thus defined sequence {Z()} i 1, 2, is independent.

For, P 2 (,) h, P ) h, X () h,

=ll P h,+ X(+) h,

{Z (+)) satises the central limit theorem

For, P ([ , (X--Z)/+

Yor all n. On the other hand
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e-’1"" d?lim._,oo P v/ ],-
Proof. It is sufficient to prove this theorem for the case where

g () is an F-measurable simple function. Let g () be a simple
function such tha% g (o)= {a, TS} (i 1, 2,

lim P
1

We can exchange the order of lira and of (X) by the same way
as in 3 of Lemma 1. We have

limp

e- du ,/2v P (d) du.

Two measurable functions g (o) and g(o) have the distribution
unctions G, (u) and G: (u) respectively, and if G (u)= G: (u) holds
for the eontinuous points, then it is said that g (o) and g (,) have
the same distribution function G (u) (or G (u)).

Corollary 1. Let g () and g ()be non-negative P-measurable
functions having the same distribution function G (u). Then

( )P  ,,WI N x,

12 P =VI ,=, X, ()l m () y’-2 g (v) ,e-: du.

Proof. From Theorem 2.

/

"2 (v) du

=limP( l" )
Next consider the second generalization.
Theorem 3. Let N,, () nN () + Q, (), where N () and

N() are P-measurable functions which takes non-negative integers,

and Q,()= 0 (/-n. If N() is R-measurable, then

limP,,,. ,<=V]

o
N P
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1 x () x () +s’ ().Proof. Let us put

First, we prove that 3, (e) converges in probability to 0. For,
lim P (I S () )

=limP(]S.()l,e, (N() =M, V.() =k))

where denotes the summation from nM to nM+ Q, () or from

nM-I Q. () to nM according as Q. (o) > 0 or Q. () 0. On the
other hand {X,} i 1, 2, satisfies the central limit theorem
(I) and Q,(o) =0(@/2) as n--oo. Hence

So Y_d

----lim >.P = EX,(,) N (o,) M)
( 1

lim E P X (,,) : aM-’/ N () M

(b lim P
1
/.

, X, (o)

_
aM-’/. N ()

I ["(’9-/ e-’/ d.

In Theorem 8, when M=N(o) =0,
den0e

Corollary 2. If N.(o) N()+ ’.() and N.(o) = nN"(o)
+@.() satisfy he conditions 0f N.{o), N{o) and 0.() in
Theorem 8, and N(o), N(o) have he same distribution funei0n

.t,-/

aM-‘/. and :t: aN(o)-’/

Proof is evident from Theorem 3.


