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88. On the Asymptotic Distribution of the Sum of
Independent Random Variables.

By Shigeru TAKAHASHI.
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1951.)

§1. Let {X;} =1, 2,.... be a sequence of independent
random variables defined in a probability space (2, F, P). The
so-called central limit theorem" states that when a sequence {X;}
satisfies certain conditions then

1 n 1 a }
lim P(VTEX*' w<La)= 1/5’;:»5 ePadu = Gla), @)

N->00

where v’%;gXi denotes suitably normalized variable. Concern-
ing this theorem we consider following two generalizations :

1° Replace a constant upper limit a of summation by a
measurable function g(w) defined in 2.

2° Replace the number » of random variables of summation
by a random function N.(w) defined in £.

On these generalizations many theorems have been proved?.
Let {X.} be a sequence of independent random variables satisfying
the central limit theorem (I). For any real numbers a and b, we
define the sets K, =[w;a <X (0)<b] and denote by F' the
smallest Borel field which includes all the sets K7 , defined for any
a,bandi=1,2,.... We complete F with respect to the measure
P and denote it by #. In §8 we prove the following :

Theorem 1. If Ee F, then

lim P (1/}2 5}:} X (w) Z a, E) = P(E)G(a) .

20-»00

In order to prove this theorem we show some lemmas in §2,
and in §4 we consider the above generalizations by using Theorem I.

To define and to discuss the problems on {X.}, it is sufficient
to consider the probability space (2, F,P) as (2, F, P). So the
theorems proved in § 4 give the answer of the above generalizations
for independent sequence.

§2. First of all we consider a sequence {X;} which satisfies
following conditions :
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1°. {X.} is an independent sequence.

2°, {X.} satisfies the central limit theorem (I).

3°. For each 17, the set of values which X, takes is at most
enumerable.

Let a; be the values which X; takes. Put P. = P[X;=dl],
Al =[w; X;=a;] and F° the smallest Borel field which includes
all the sets AL k=1,2,...., i=1,2,..... We assume that'P;
is a non-increasing sequence of % for each <. Then (2, F°, P) is
also a probability space. For any sequence (finite or infinite) of
integers 4, %, ...., %, we define the set

Ay i3y cnnnnn = / \ A
=1

Then, from the independency of {_X;}

P(Aflw:,;- 7i)"‘P /\A P(QXZ::GII{Z)

l=1
=1 P (X, =a) = II P, (ID)
=1 =1
If for some infinite sequence iy Gay veny Tny ooey P(Bipigrecesgprecss)

1
=P>0, then limP( b Ip Saﬁ) P. This con-

tradicts with the assumptlon 2°.
Hence for any infinite sequence %, %2, <« vvy Tmy = -

P(Ail,q'a,-..., .-..)=0.

(A): For any two sets 4, 4, ..., and Ayl joye ey im, it 18 sSeen :
1°. If there exists at least one k such that k < m, n and % == »

then As, iyseevsi, N\ Assiyye s, =6, where 8 denotes the empty set.
2°, It m=mn and % =7 for all k < m =mn, then

Ail,iz, ceesy 3 =

%

8°. If m=mn and 4 =g, for all £k < m, then
Ail"lzy-°~v,i”<A.7‘7.'}2"°-'-7.'/' .

m

Asyig wener i -

Next we define a probability space (T, B, m) as follows :
1°. T is the interval [0.1>.
2°. B is the class of B-measurable sets in [0,1 >.
3°. m’is Lebesgue measure.

In T we define the set £, .,,. ., ;, for any sequence of integers ., s,.,q,.

11—1 %
1° B, =|t:3 Pe<t< S Pel.
1 %=1 7=

2°. It E:,s,..,q, ,hasbeen defined and the interval (d,, d. >
denotes then

‘ﬂ
Byvgronr =t 4+ @ —) St <dr@-d) DA
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From the above construction and (II)
My g5 e s o) =1 Py=P(Aq, oy .0y 0) Tor allin, i,y ydne (IV)
For any infinite sequence 41, 2, .., 4, ...
m(E,:I,,'z,..,in,...)=0. (V)
By (V), it is seen that the smallest Borel field which includes all
the sets E; i, ...., is identical with the class B.
(B): For any twosets E; , 1, .., and Ej , 5, .., ,itisseen:
1°. If there exists at least one k such that 7,=7,, &k <m,n, then
Ev',,f.z’ cey '17“/\E.7'1?.’/'27 .. ,J'm:@'
2°, If m =n and 4, = j, for all k < m = n, then
E’tl, ig9 % 374 =Ej".i2, ey

N
2N Im °

3°. If m <n and 1, =g, for all k < m, then
Eiafz,H;inC E.'/'1r.‘1‘2;--,jm-

By (A) and (B) we can define a transformation ¢ from B to
F*° ag follows :

1°. @ (®) =0.

2% @By, gy -eri)=Ai,apseesq, for all 4,0, .. 4.

3°. ¢(4\=/!Ei)=‘\;/j¢(E¢), E.cB.
From 1°—8° it follows that

4°. () =0 and @(E)=9(T)—¢(E') where E' denotes
the complement of E.

5°. ¢({\=1E)=Q¢)(.E¢), E.¢B.
Hence @ is a one to one correspondence between the sets of B and
sets of F".

By (IV) and the properties of @, it follows that;

1°. if E ¢ B then @ (E) e F° and m (E) = P{p(L)),

2°, if £ ¢ F° then ¢ ' (E)e B and m(p~' (K)) = P(E).
We define a sequence of random variables {Y;(¢)} ¢ = 1, 2.. as follows,
if teBi,r, .., », then Y, () = af, for all &k, ks .., kit =1,2,.. .

Thus defined sequence {Y.(¢)} is independent. For, m({/”\1 Y.(®)
= a2‘> =M (B g o oeerr) = Iqu:P},.l . On the other hand
[t: Y,;(t) = a;i] = U E/‘,], RN )
N k “

172 Fimy
where \/ denotes the summation for all possible combinations of

iy By
ki, key oov., ksq. According to (B) and (IV)
mt; Yi(t)=@2~i = > m(Eklyl.t27 seees kpp lc,,)

Fykg. . kg y

n-—-1
= X PLUP,=P,.
Ly T ’

%y
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Hence m(/?:\1 Y.() = “;%) = 11;1 m (Y, (t) = az) for all n. By the fact
4= i=

that Y(t) takes on E., s, ..., the same value as that X; takes on
Apys 1y -+ -y 1, and by the properties of ¢ it is seen for all n that

q»(]/ =R AVEE (igxi(w),_g_a).

Hence m(vf—‘%’; ‘};]1 Y. () < a,) P (V ” Z X, (o) ﬁa)

1. o Lax
%0 tim o (== ‘ZﬂYi(t)ga)=,1‘1+1L1P(1/—%-§X¢(w)§_a>.
=G (a).

Lemma 1. If EeB, then
iirgm(l/ =SV <a, ) m (E) G (a) .
Proof. For any finite sequence of integers %, %, ...., %

lim m(j/ b Ib AUES PR

22-»00

= lim m(l/ ''''' (Z+3)70<a, By yooeess)

n>oa =1 i=1+1

=lim m(l/ n 2 Y (t)ga Lil’ ,'0 ..... ’ Ql)

2>00 =l+1

l
= lim m( .'—*=Z Y,;(t)_ga, Q]Xk=@§k>

7->00

N-Ho0

= lim m(]/ R AUEILD (k/:\le=af,c)

1 kJ
=lim m( RV Z0)m By -y ) = GO M By -1, )

L]

Now let M denote the family of sets £ which satisfy the following
relation

lim m(V =3 Y. <a, L) m (E) G (a) .

Then, about M it is seen that:

1°. M includes Ei],fz, ceepgforall oy, o0 (0=1,2,...0).
For a finite sequence 4, %, ...., 72, we have proved above, but for
infinite sequence it is evident from (V).

2°. X EZE and E, E'eM, then E'l—Ec¢ M.

) 1 =
For, hmm(/Tg} 0L a, EI_E)

21-»00

= lim m(l/~~2Y,(t)£a Ef)—hmm ZYi(t)ﬁa E)

7->00 7%->00

=G@mE)—-G(@)mE)=G@m(E—-E).
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3°. If £ = Q d;, d;e M and 4;, 4; are non-overlapping (5 ==5"),
then Ee M. ’
1 =
For, lim m(l/72 i) La, E)
2-»00 =1

1 3
=lim 3m( =NV <a, B). (VI)

J
nro0 =1

For all n, 0 m

/N

1
DY O<a, H)<m)

3

and m (d;) = m (E).

©

Hence the convergence of ?:.“1 m <1 /7‘§ Y.) L a, Aj) is unifom

with respect to #. So we can exchange the order of lim and 3]
of (VI). We have therefore

1 = 8
VI) = L lim m(VTE Y. () <La, Jj) = E G(a)m (4;) = G(a)ym (E).

J=1 n>co

By 1°—8° and the fact that m denotes Lebesgue measure, it follows
that M includes all sets of B.

We complete F° with respect to the measure P and denote it by #'.
Lemma 2. If K¢ F',

then hmP( ﬁéXi(w)_S_a,E)=P(E)G(“)

2> 00

Proof : It is sufficient to prove this lemma for the case K e F”.

1 ) 1 n
For alln, o7'(_ = B X @) Sa, E)=( Arn V) <a, 97@).

Hence lim P( = i Xiw<La, E)

2>

= lim m( L ACES S ¢-'(E))

G (@) m ("' (E)) = G (a) P(E) .
§8. In this paragraph, we prove the theorem mentioned in §1.

Let {X.} be a sequence of independent random variables satisfying
the central limit theorem (I).

Now, let (hy) G=1,2....,k=0,+1,+2,....) be a se-
quence of real numbers satisfying the following conditions:

1°. hie>0 for k>0, hye<0 for k<0
hix=0 for k=0.
2°. (hiyi) <h; for all k and _Z‘lh,;-——-O(V%)(n——)oo).
8°. i hiyw = + §hi'k=— o for each 7.
k=0 k=0

Using this sequence (h;,:), we define a sequence of random vari-
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ables {Z;(w)} (=1,2,....) as follows:
Z’i(w):liJ—L:)hi’k if ("sEiyn:[ yzknngi(w) Zuk]

forn=0,+1,+2,...., %-—1,2, ceee .
Thus defined sequence {Z;(w)} 7=1,2,.... is independent.
For, P(/\ Z (o) =3 hos) = P(m[z s < Xe (@) < 33 o)
i+ a3

=i P[50 X0 0) <33 ava =11 P(200) = Shos)-

{=1

{Z; (@)} sat1sﬁes the central limit theorem (I).
For,  P(2&=2)v 7 <e)2P(Shiv n <)
for all ». On the other hand il hi=0(y n). Hence

nmP(bﬂ(X ~X)[v'n [\ s)>hm P(zk/,/n<a)~1.

200 n-»00

So h ?} (X;—Z) >0 (n— =) in probability. (VID)

Therefore lim P ( 421 Zi () < a)

02-p O

= lim P —~21 (Z: (©) =X, (o) + X: () ga)

N0

= lim P —:z;:)g(w)ga)=a(a).

n->oe

Now, let F* be the smallest Borel field which includes E;,. for
n=0+1,+2, .., ¢=1,2,... Then by Lemma 2 EF ¢ F*, and

limP(]/%gZi(w)_S_a, E):P(E)G(a). (VIII)

2> 0

By (VII) and (VID), if E s F*,
limP(V%iXi(w)ga,E = P(E)G(a). (IX)

n->00 i=1

Next, we state Theorem 1 by using the definitions of F and
F mentioned in §1.
Theorem 1. If Ec¢F, then

1 n
}’EIOISP(P/TEXﬂ(w)ga, E)=P(E)G(a).

Proof. It is sufficient to prove this theorem for the case where
E ¢ F. To define any set E belonging to F, it is sufficient to
consider at most enumerable sets of the type of [o; a < X, (o) <8]
for each 2. So we ean choose (%, such that the set E belongs to
F* determined by (%::) . From (IX), Theorem 1 holds for this set.

8§84 Theorem 2. Let g(w)be a non-negative F-measurable func-
tion. Then
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tim P ( ———\zJX(w)]sg(w)) /z,rj (o) [ e .

n->00 ~9(w)
Proof. It is sufficient to prove this theorem for the case where
g (0) is an F-measurable simple function. Let ¢ (»o) be a simple
function such that g(w)=A{a;, Fi} ¢0=1,2,....)

(0002009
—im3P(, S x@] <, o0 =a). ®

We can exchange the order of lim and 3} of (X) by the same way
as in 8° of Lemma 1. We have

X) = zhmP( IS X @S, 90 =)

J=1 m>o0

1 W
= 2W z Pg(w) = a)L 8y = | S P (dw)§ e

Two measurable functions ¢, (o) and g (w) have the distribution
functions G, (u) and G:(u) respectively, and if G;(u) = G:(u) holds
for the continuous points, then it is said that ¢; (w) and g¢. (») have
the same distribution function G, (w) (or G.(u)).

Corollary 1. Let ¢, () and g (») be non-negative F-measurable
functions having the same distribution function G (x). Then

hmP( r*li}X,(w)ISgn (0’))

= lim P( ———| 2 X, ()] <gs (m)) = -—1— )’:’d(i (v)jv_we““’” du.

nH>o0 'ﬂ'

Proof. From Theorem 2.

lim P %l'ﬁm(w)lgg, @)= /%jp( o) |

7-»00

91( w) 2/
Z—u /2 :lu
—-91(-»)

= 21 5 dG (v) j‘ P du = 1/:517 S‘QP (dw)S _gz(w)e‘ "

—imP( 15X <00).

%400
Next consider the second generalization.
Theorem 8. Let N, (w) =nN () + Q.(»), where N, (o) and
N (w) are P-measurable functions which takes non-negative integers,

and Qu(w) =0 (/ _n—) If N (w) is F-measurable, then
tim P /———1 3K ) | < a)

700

1 am=12
j e du

=SPWN@=M1 5=\ .

aN(w) ™1/

_1__ —ulf2
= SQP (d(o) Vé;S_GN(.u)_1/26 ? du .
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1 Na(w) 1 2N(w)
Proof. Let us put ,——>) X{w v n 2 Xi(@+S.(0).
1 4 n 3=0 n G=0

First, we prove that S, (w) converges in probability to 0. For,
lim P (| S.(0)|>¢)

=lim P (]S, ()| > e, UN@ =M, UQw=1h)
=S EmP (]S (@) | >¢, N =M, \/Qﬂ(«o)*k)

M=0 nroo
gME lim P( ~~‘| SV X (@) | > e) )

where >V denotes the summation from nM to nM + Q. (w) or from
nM—| Q. (w) | to nM according as Q. (w) =20 or Q.(w) < 0. On the
other hand {X;}¢=1,2,.... satisfies the central limit theorem
@) and Q. (w) =0 (n""’) as n—> o . Hence

tim P~ ~tzfx;(w>|>e)=o.

So lim P (1/’““ wu:) (w)bga ~—hmP( ;1?/
~tim 5P(, %Xm)]ga,, N @ = M)
—tim £ P( | S X0 |, N@ =)

=S lim P( /nMizx (w)‘gaM“”’, N (o) = M)

M=0
~1/3

v _l_ M —uf/2
—SPO@ =) 5 [ e du

1 N(w) -
=V or SP( w)razv( )z e du.
In Theorem 8, when M = N(w) =0, xaM " and +aN(w)'”
denote + oo .
Corollary 2. If N',(0) = nN(0)+Q.(w) and N'.(w) = nN"(w)
+Q".(0) satisfy the conditions of N,(@), N(w) and @Q.(») in
Theorem 3, and N'(w), N'"(w0) have the same distribution function

N (w)

Z‘ X, (@) ga)

Nn (w) ~1/2

35 X () ga) alaE el e

Proof is evident from Theorem 3.

_ 1
G (w), then lim P =

RS 2

= hmP(

NP




