58. On the Induced Characters of a Group.

By Masaru Osima.

Department of Mathematics, Okayama University. (Comm. by Z. Suetuna, M.J.A., May 13, 1952.)

This short note is a preliminary report for the theory of induced characters of a group. The detailed proofs will be given elsewhere. The present study is closely related to the papers Brauer [1] and [3].

1. Let \mathfrak{G} be a group of finite order $g=q^ag'$ where q is a prime number and (g', q)=1 and let \mathfrak{D} be a fixed q-Sylow-subgroup of \mathfrak{G} . Let C_1, C_2, \ldots, C_n be the classes of conjugate elements in \mathfrak{G} . Further let C_1, C_2, \ldots, C_n be the classes of conjugate elements which contain the elements in \mathfrak{D} . We denote by $Q_1=1, Q_2, \ldots, Q_h(Q_i \in \mathfrak{D})$ a complete system of representatives for the classes $C_i(i=1,2,\ldots,h)$. Let $g_i=g/n_i$ be the number of elements in C_i , so that n_i is the order of the normalizer $\mathfrak{N}(Q_i)$ of Q_i in \mathfrak{G} . We set $n_i=q_in_i'$ where $(n_i',q)=1$. q_i is called the q-part of n_i . Let c_1, c_2, \ldots, c_n and a_1, a_2, \ldots, a_n be distinct irreducible characters of a_1 and a_2 . In what follows we shall always take a_1 and a_2 to be the characters of a_1 induced from a_2 , then we have the following Frobenius formulas

(1)
$$\begin{cases} \varsigma_{\mu}(Q) = \sum_{\nu} r_{\mu\nu}\vartheta_{\nu}(Q) & \text{(for } Q \text{ in } \mathfrak{D}) \\ \vartheta_{\nu}^{*}(G) = \sum_{\mu} r_{\mu\nu}\varsigma_{\mu}(G) & \text{(for } G \text{ in } \mathfrak{G}), \end{cases}$$

where

(2)
$$r_{11}=1, r_{1\nu}=0 (\nu=1).$$

As is well known, the rank of $M=(r_{\mu\nu})$ is h. We can prove, by the similar way as in Brauer [3]¹⁾, the following

Lemma 1. $M=(r_{\mu\nu})$ contains a minor of degree h which is not divisible by q.

We set

$$R_1 = egin{pmatrix} r_{11} & r_{12} & \ldots & r_{1h} \ r_{21} & r_{22} & \ldots & r_{2h} \ \ldots & \ldots & \ldots \ r_{h1} & r_{h2} & \ldots & r_{hh} \end{pmatrix}.$$

Then we may assume without restriction that

¹⁾ We can somewhat simplify Brauer's original proof.

$$|R_1| \not\equiv 0 \qquad (\text{mod } q).$$

We set

$$(4) M = \begin{pmatrix} R_1 & R_3 \\ R_2 & R_4 \end{pmatrix} = (R, *), R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}.$$

Since the rank of M is h, we have

$$\binom{R_3}{R_4} = RB ,$$

where

(6)
$$B = \begin{pmatrix} b_{h+1, 1} & b_{h+2, 1} & \dots & b_{m, 1} \\ b_{h+1, 2} & b_{h+2, 2} & \dots & b_{m, 2} \\ \dots & \dots & \dots & \dots \\ b_{h+1, h} & b_{h+2, h} & \dots & b_{m, h} \end{pmatrix}.$$

By (3), we see that the coefficients $b_{h+\kappa,\lambda}$ are the rational numbers whose denominators are prime to q. Further from (2)

(7)
$$b_{h+\kappa,1}=0$$
 $(\kappa=1,2,\ldots,m-h).$

Since M=R(I, B), we obtain

(8)
$$(\varsigma_{\mu}(Q_i)) = R(I, B) (\vartheta_{\nu}(Q_i)) = R(\tilde{\vartheta}_{\lambda}(Q_i)),$$

where

(9)
$$\tilde{\vartheta}_{\lambda} = \vartheta_{\lambda} + \sum_{\kappa=1}^{m-h} b_{h+\kappa,\lambda} \vartheta_{h+\kappa} \qquad (\lambda = 1, 2, \ldots, h).$$

In particular, (7) yields

(10)
$$\tilde{\vartheta}_1 = \vartheta_1.$$

From (8) we have

(11)
$$\varsigma_{\mu}(Q) = \sum_{k=1}^{h} r_{\mu\lambda} \, \widetilde{\vartheta}_{\lambda}(Q) \qquad \text{(for } Q \text{ in } \mathfrak{Q}).$$

Lemma 2. If Q and Q' in Ω are conjugate in \mathfrak{G} , then $\tilde{\vartheta}_{\lambda}(Q) = \tilde{\vartheta}_{\lambda}(Q')$.

We obtain the following important

Theorem 1. If
$$\tilde{\Theta} = (\tilde{\vartheta}_{\lambda}(Q_i))$$
, then $|\tilde{\Theta}|^2 = q_i q_2 \dots q_n/v$.

where v is a rational integer which is prime to q. We set

(12)
$$Z = (\varsigma_{\mu}(Q_i)), \quad \Theta^* = (\vartheta_{\lambda}^*(Q_i)),$$

$$\mu = 1, 2, \ldots, n : \lambda, i = 1, 2, \ldots, h$$
. Then (1) and (8) yield

$$\theta^* = R'Z = R'R\tilde{\theta}.$$

If we set $W=R'R=(w_{\kappa\lambda})$, then $w_{\kappa\lambda}=\sum r_{\mu\kappa}r_{\mu\lambda}=w_{\lambda\kappa}$ and

(14)
$$\vartheta_{\kappa}^{*}(Q) = \sum_{k=1}^{h} w_{\kappa \lambda} \tilde{\vartheta}_{\lambda}(Q).$$

Now we obtain the following theorems.

Theorem 2.
$$\sum_{\lambda} \vartheta_{\lambda}^*(Q_i) \tilde{\vartheta}_{\lambda}(Q_j^{-1}) = n_i \delta_{ij}$$
,

where n_i is the order of the normalizer $\mathfrak{N}(Q_i)$ of Q_i in \mathfrak{G} .

Theorem 3.
$$\sum_{i} g_{i} \tilde{\vartheta}_{\kappa}^{*}(Q_{i}) \tilde{\vartheta}_{\lambda}(Q_{i}^{-1}) = g \delta_{\kappa \lambda}$$
.

If we take $\lambda=1$, then from (10) we have

(15)
$$\sum_{Q^*} \vartheta_{\kappa}^*(Q^*) = \begin{cases} g & \text{for } \kappa = 1 \\ 0 & \text{for } \kappa \neq 1, \end{cases}$$

where Q^* ranges over all elements of G whose orders are powers of q.

Since
$$|Z'Z| = |\tilde{\theta}'W\tilde{\theta}| = \pm n_1 n_2 \dots n_h$$
, we have by Theorem 1 (16) $|W| \not\equiv 0$ (mod q).

We can distribute the irreducible characters c_{μ} of \mathfrak{G} into blocks with respect to \mathfrak{Q}^{2} . This will be reserved for a subsequent paper.

2. Let $A_0=1, A_1, A_2, \ldots, A_k$ be a maximal system of elements of \mathfrak{G} such that A_i , A_j are not conjugate for $i \neq j$ and the order of each A_i is prime to q. Let \mathfrak{N}_i be the normalizer of A_i in \mathfrak{G} and let \mathfrak{D}_i be a q-Sylow-subgroup of \mathfrak{N}_i . A full system Σ of elements of \mathfrak{G} representing the different classes of conjugate elements can be obtained in the following manner: Let $Q_{i,1}, Q_{i,2}, \ldots, Q_{i,n(i)}$ $(Q_{i,j} \in \mathfrak{D}_i)$ represent the different classes of conjugate elements in \mathfrak{N}_i , in which the orders of the elements are powers of q. Then Σ consists of the elements $A_iQ_{i,1}, A_iQ_{i,2}, \ldots, A_iQ_{i,n(i)}$ for $i=0,1,2,\ldots,k$. Let us denote by $n_{i,j}$ the order of the normalizer $\mathfrak{N}(A_iQ_{i,j})$ of $A_iQ_{i,j}$ in \mathfrak{G} . Then the order of the normalizer $\mathfrak{N}(Q_{i,j})$ in \mathfrak{N}_i is equal to $n_{i,j}$.

We denote by $\vartheta_{i,\nu}(\nu=1,2,\ldots,m(i))$ the irreducible characters of \mathfrak{R}_i . Then we obtain by the similar way as in Brauer [2]³⁾

(17)
$$\varsigma_{\mu}(A_{i}Q_{i,j}) = \sum_{\lambda=1}^{h(i)} r_{\mu\lambda}^{i} \tilde{\vartheta}_{i,\lambda}(Q_{i,j}),$$

where $r_{\mu\lambda}^i$ are algebraic integers and $\tilde{\vartheta}_{i,\lambda}$ have the same significance for \mathfrak{R}_i as $\tilde{\vartheta}_{\lambda}$ for \mathfrak{G} . We arrange these numbers $r_{\mu\lambda}^i$ for a fixed i in form of a matrix $R^i = (r_{\mu\lambda}^i)$ and set

(18)
$$R^* = (R^0, R^1, \dots, R^k), \qquad R^0 = R.$$

According to (17) we have a formula $(\varsigma_{\mu}(A_iQ_{i,j}))=R^*V$. The matrix V

²⁾ See Osima [5].

³⁾ Cf. Brauer [2] p. 927.

breaks up completely into the matrices $(\tilde{\partial}_{i,\lambda}(Q_{i,j}))$ $(i=0,1,2,\ldots,k)$. Since $(\varsigma_{\mu}(A_iQ_{i,j}))$ is non-singular, so is R^* . Let us denote by $q_{i,j}$ the q-part of $n_{i,j}$. Then, by Theorem 1

(19)
$$|V|^2 = \prod_{i=0}^k (\prod_{j=1}^{h(i)} q_{i,j}/v_i).$$

Here $v_0 = v$ and $(v_i, q) = 1$. Hence we obtain

$$(20) |R^*| \not\equiv 0 (\text{mod } \mathfrak{q}),$$

where q is a prime ideal which divides q.

Let $\vartheta_{i,\lambda}^*$ be the character of \mathfrak{N}_i induced from the irreducible character $\vartheta_{i,\lambda}$ of \mathfrak{D}_i . We denote by \overline{a} the number conjugate complex to a. Then, from

$$\sum_{\mu} \varsigma_{\mu}(A_i Q_{i,\,s}) \, \overline{\varsigma_{\mu}(A_j Q_{j,\,t})} = n_{i,\,s} \, \delta_{i,\,j} \, \delta_{s,\,t} \,,$$

we can derive

(21)
$$\sum_{\mu} \bar{r}_{\mu\lambda}^{j} \varsigma_{\mu}(A_{i}Q_{i,s}) = \vartheta_{i,\lambda}^{*}(Q_{i,s}) \delta_{ij}.$$

(21) impries

(22)
$$\sum_{\mu} r^i_{\mu\kappa} \, \bar{r}^j_{\mu\lambda} = w^i_{\kappa\lambda} \, \delta_{ij} \,,$$

where $w_{\kappa\lambda}^i$ have the same significance for \mathfrak{R}_i as $w_{\kappa\lambda}$ for \mathfrak{G} .

The group $\mathfrak{H}_i = \{A_i, \mathfrak{D}_i\}$ generated by A_i and \mathfrak{D}_i is a direct product: $\mathfrak{H}_i = \{A_i\} \times \mathfrak{D}_i$. An irreducible character $\psi_{\rho}^{(i)}$ of \mathfrak{H}_i is the product of an irreducible character $\chi_{i,\alpha}$ of $\{A_i\}$ and an irreducible character $\vartheta_{i,\nu}$ of \mathfrak{D}_i :

(23)
$$\psi_p^{(i)}(A_iQ_{i,j}) = \chi_{i,\alpha}(A_i)\vartheta_{i,\gamma}(Q_{i,j}).$$

We denote by $(\chi_{i,\alpha} \vartheta_{i,\nu})^*$ the character of \mathfrak{G} induced from the character $\chi_{i,\alpha} \vartheta_{i,\nu}$. Let

(24)
$$\varsigma_{\mu}(A_{i}Q_{i,j}) = \sum_{\nu} \sum_{\alpha} r_{\alpha\mu\nu}^{i} \chi_{i,\alpha}(A_{i}) \vartheta_{i,\nu}(Q_{i,j}).$$

Then

(25)
$$(\chi_{i,\alpha} \vartheta_{i,\nu})^* = \sum_{\mu} r^i_{\alpha\mu\nu} \varsigma_{\mu}.$$

We have from (17) and (24)

(26)
$$r_{\mu\lambda}^{i} = \sum_{\alpha} r_{\alpha\mu\lambda}^{i} \chi_{i,\alpha}(A_{i}) \qquad (\lambda = 1, 2, \ldots, h(i)).$$

From (20) and (26) we can prove directly Theorem 1 in Brauer [3].

3. Above arguments are also applicable to the theory of modular characters of \mathfrak{G} for a prime $p \neq q$. Let $\varphi_1, \varphi_2, \ldots, \varphi_l$ be distinct absolutely irreducible modular characters of \mathfrak{G} and let $\eta_1, \eta_2, \ldots, \eta_l$ be the characters of indecomposable constituents of the regular representation of \mathfrak{G} (mod p). Let C_1, C_2, \ldots, C_l be the classes of conjugate elements in \mathfrak{G} , in which the orders of the elements are prime to p. We denote by H_1, H_2, \ldots, H_l a complete system of

representatives for the classes C_i (i=1, 2, ..., l). We may assume that $H_i=Q_i$ (i=1, 2, ..., h). We have 4)

(27)
$$\begin{cases} \varphi_{\kappa}(Q_i) = \sum_{\nu=1}^m s_{\kappa\nu} \vartheta_{\nu}(Q_i) \\ \vartheta_{\nu}^*(H_j) = \sum_{\kappa=1}^l s_{\kappa\nu} \gamma_{\kappa}(H_j) . \end{cases}$$

Using (27) we obtain from Theorem 2

(28)
$$\sum_{\kappa=1}^{l} \gamma_{\kappa}(H_{j}) \left(\sum_{\lambda=1}^{h} s_{\kappa\lambda} \, \tilde{\vartheta}_{\lambda}(Q_{i}^{-1}) \right) = \begin{cases} n_{i} & \text{(for } H_{j} = Q_{i}) \\ 0 & \text{(for } H_{i} \neq Q_{i}). \end{cases}$$

On the other hand, we have

(29)
$$\sum_{\kappa=1}^{l} \gamma_{\kappa}(H_{j}) \varphi_{\kappa}(Q_{i}^{-1}) = \begin{cases} n_{i} & \text{(for } H_{j} = Q_{i}) \\ 0 & \text{(for } H_{i} = Q_{i}). \end{cases}$$

Since $\eta_1, \eta_2, \ldots, \eta_l$ are linearly independent, we have from (28) and (29)

(30)
$$\varphi_{\kappa}(Q_i) = \sum_{\lambda=1}^{h} s_{\kappa\lambda} \, \tilde{\vartheta}_{\lambda}(Q_i).$$

We denote by $d_{\mu\kappa}$ the decomposition numbers of ${\mathfrak G}$ for p:

(31)
$$\varsigma_{\mu}(H_{j}) = \sum_{\kappa} d_{\mu\kappa} \varphi_{\kappa}(H_{j}).$$

We have from (11), (30), and (31)

$$(32) r_{\mu\lambda} = \sum_{\kappa} d_{\mu\kappa} s_{\kappa\lambda} ,$$

or in matrix form

$$(33) R = DS,$$

where $D=(d_{\mu\kappa})$ and $S=(s_{\kappa\lambda})$. Let C be the matrix of Cartan invariants of \mathfrak{G} . Since C=D'D, we obtain

$$(34) W=R'R=S'D'DS=S'CS.$$

Let A_0 , A_1 , ..., A_k have the same significance as in § 2. Then we may assume that A_0 , A_1 , ..., A_t are a maximal system of elements of \mathfrak{G} such that A_i , A_j are not conjugate for $i \neq j$ and the order of each A_i is prime to p and q. We obtain by the similar way as in § 2

(35)
$$\varphi_{\kappa}(A_{i}Q_{i,j}) = \sum_{\lambda=1}^{h(i)} s_{\kappa\lambda}^{i} \tilde{\vartheta}_{i,\lambda} (Q_{i,j}),$$

where $s_{\kappa\lambda}^i$ are algebraic integers. We set $S^i = (s_{\kappa\lambda}^i)$ and

(36)
$$S^* = (S^0, S^1, \ldots, S^t), S^0 = S.$$

Then we have

⁴⁾ See Brauer and Nesbitt [4] § 26,

The matrix U breaks up completely into the matrices $(\tilde{\vartheta}_{i,\lambda}(Q_{i,j}))$ $(i=0,1,2,\ldots,t)$.

By Theorem 1

(38)
$$|U|^2 = \prod_{i=0}^t (\prod_{j=1}^{h(i)} q_{i,j}/v_i), \qquad (v_i, q) = 1.$$

Since $|\varphi|^2 |C| = \prod_{i} (\prod_{i,j})^{5}$, we have $|S^*| \neq 0 \pmod{q}$. Further from (38) we see that $|C| \neq 0 \pmod{q}$. This, combined with $(|\varphi|, p) = 1$, yields

Theorem 4. The determinant $|c_{\kappa\lambda}(p)|$ of the matrix of Cartan invariants of \mathfrak{G} is a power of $p^{\mathfrak{G}}$.

References.

- [1] R. Brauer: On the Cartan invariants of groups of finite order, Ann. of Math., 42 (1941).
- [2] ———: On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., 42 (1941).
- [3] ——: On Artin's L-series with general group characters, Ann. of Math., 48 (1947).
- [4] ——— and C. Nesbitt: On the modular characters of groups, Ann. of Math., 42 (1941).
- [5] M. Osima: On the representations of groups of finite order, Math. J. Okayama Univ., 1 (1952).

⁵⁾ See Brauer and Nesbitt [4].

⁶⁾ Brauer [1] Theorem 1.