72. Probability-theoretic Investigations on Inheritance. XI₂. Absolute Non-Paternity.

By Yûsaku Komatu.

Department of Mathemattics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University. (Comm. by T. FURUHATA, M.J.A., June 12, 1952.)

4. Absolute non-paternity against brethren with different fathers.

Concerning brethren with different fathers, i.e., children with a mother alone in common, analogous problems arise as in the preceding section. We first consider a problem corresponding to the one discussed in §2 of X. Let us denote by

$$(4.1) D_0(ij, hk)$$

the probability of an event that a brethren combination (A_{ij}, A_{hk}) with different fathers appears and then the proof of absolute non-paternity can be established against both of them. This is the basic quantity corresponding to (2.2) of X. The explicit expression for (4.1) can immediately be derived from (2.1) by replacing merely a factor $\sigma(ij, hk)$ by the corresponding one $\sigma_0(ij, hk)$. We thus get, corresponding to (2.2) to (2.8), the following results:

Α

$$(4.9) D_0(ij, hk) = D_0(hk, ij) (i, j, h, k=1, ..., m).$$

Partial sums corresponding to (2.10) and (2.11) become

$$\begin{array}{rl} \textbf{(4.10)} & D_0(ii) = p_i^2(1-3S_2+\frac{5}{2}S_3+S_2^2-\frac{3}{2}S_4\\ &\quad -(2-3S_2+S_3)p_i+2(2-S_2)p_i^2-\frac{11}{2}p_i^3+\frac{7}{2}p_i^4),\\ \textbf{(4.11)} & D_0(ij) = 2p_ip_j(1-3S_2+\frac{5}{2}S_3+S_2^2-\frac{3}{2}S_4\\ &\quad -(2-3S_2+S_3)(p_i+p_j)+2(2-S_2)(p_i^2+p_j^2)-2p_ip_j\\ &\quad -\frac{11}{2}(p_i^3+p_j^3)-3p_ip_j(p_i+p_j)+\frac{7}{2}(p_i^4+p_j^4)+p_ip_j(p_i^2+p_j^2)\\ &\quad +2p_i^2p_j^2) & (i=j). \end{array}$$

Sub-probabilities over homo- and heterozygotic first children become

Y. KOMATU.

(4.12)
$$\sum_{i=1}^{m} D_{6}(ii) = S_{2} - 2S_{3} - 3S_{2}^{2} + 4S_{4} - \frac{11}{2}S_{2}S_{3} + \frac{11}{2}S_{5} + S_{2}^{3} - S_{3}^{2} - \frac{7}{2}S_{2}S_{4} + \frac{7}{2}S_{6},$$

(4.13)
$$\sum_{i,j}' D_0(ij) = 1 - 8S_2 + \frac{29}{2}S_3 + 12S_2^2 - \frac{45}{2}S_4 - \frac{41}{2}S_2S_3 + 24S_5 \\ -S_2^3 + 4S_3^2 + \frac{15}{2}S_2S_4 - 11S_6,$$

the sum of which represents the whole probability

(4.14)
$$D_0 = 1 - 7S_2 + \frac{25}{2}S_3 + 9S_2^2 - \frac{37}{2}S_4 - 15S_2S_3 + \frac{37}{2}S_5 + 3S_3^2 + 4S_2S_4 - \frac{15}{2}S_6.$$

As illustrative examples we show here the whole probabilities in cases of ABO, Q, Qq_{\pm} and MN blood types; the three former cases contain recessive genes. The results are as follows:

 $(4.15) D_{0ABO} = \frac{1}{2}pqr^2(1+r+2r^2+4pq),$

$$(4.16) D_{0q} = D_{0q_{\pm}} = 0,$$

$$(4.17) D_{0MN} = s^2 t^2 (1-st).$$

Inequalities corresponding to (2.21) and (2.22) of X can be verified in quite a similar manner, and further an inequality, corresponding to (2.23) of X, can also be shown:

 $(4.18) D_0 \leq D.$

Problems corresponding to the ones stated at the end of §2 in X are now immediate. In fact, since the quantity C_0 corresponding to (1.6) of X coincides with C given in (1.6), the whole probability of proving non-paternity against a distinguished child alone is given by

(4.19)
$$C_0 - D_0 = 3S_2 - \frac{17}{2}S_3 - 7S_2^2 + \frac{31}{2}S_4 + 15S_2S_3 - \frac{37}{2}S_5 - \frac{37}{2}S_$$

and that against at least one child by

$$(4.20) \qquad \tilde{D}_0 \equiv 2C_0 - D_0 = 1 - S_2 - \frac{9}{3}S_3 - 5S_2^2 + \frac{25}{3}S_4 + 15S_2S_3 - \frac{37}{3}S_5 \\ -3S_3^2 - 4S_2S_4 + \frac{15}{3}S_6.$$

5. Absolute non-paternity of a father of a child against another child.

We now turn to a problem to determine a probability of an event that a father of first child can assert his non-paternity absolutely against second child; the brethren being supposed to possess different fathers. This is a problem corresponding to one discussed in §4 of X. We denote by

$$(5.1) E_0(hk, fg)$$

the probability of an event that a brethren combination (A_{hk}, A_{fg}) , possessing a mother alone in common, appears and then a father of first child can assert his non-paternity against second child. The

[Vol. 28,

318

quantity (5.1) can be determined by modifying the procedure for determining (2.1) suitably, namely, by making use of the σ_0 's instead of the σ 's and the probabilities a posteriori of father of first child instead of general frequencies.

Symmetry relation similar to (2.9) will not hold in general, but an identical relation

(5.2)
$$E_0(fg, fg) = 0$$

does hold good; cf. (4.3) of X.

Probability a posteriori of a type A_{ab} of father possessing first child A_{hk} becomes, as already noticed in (1.28) of IV,

(5.3)
$$\pi(ab;hk)/A_{hk}.$$

Thus, the results can be derived as follows:

(5.4)	$E_0(hh, ff) = \frac{1}{2} p_h^2 p_f^2 (1 - p_f)$	$(h \neq f),$
(5.5)	$E_0(hf, ff) = \frac{1}{4} p_f^2 p_h (1+2p_f)(1-p_f)$	$(h \neq f)$,
(5.6)	$E_0(hk, ff) = p_f^2 p_h p_k (1-p_f)$	$(h, k \neq f; h \neq k);$
(5.7)	$E_{0}(f\!\!f, fg) \!=\! 0,$	
(5.8)	$E_0(hh,fg) = p_h^2 p_f p_g (1 - p_f - p_g)$	$(f \neq g; h \neq f, g),$
(5.9)	$E_0(hf, fg) = \frac{1}{4} p_h p_f p_g (1 + 4 p_f) (1 - p_f - p_g)$	$(f \neq g; h \neq f, g),$
		7 7 7 8 7 7 7 7

(5.10)
$$E_0(hk,fg) = 2p_h p_k p_f p_g(1-p_f-p_g)$$
 $(f \neq g; h, k \neq f, g; h \neq k).$

The relation (5.7) would, together with (5.2), also previously be noticed. In fact, father of homozygotic first child A_{ff} must contain at least one gene A_f and hence cannot assert his non-paternity absolutely against second child possessing this gene.

Several partial sums or sub-probabilities are obtained in the following forms:

(5.11)
$$\sum_{h \neq f} (E_0(hh, ff) + E_0(hf, ff)) + \sum_{h,k \neq f} 'E_0(hk, ff) = \frac{3}{4} p_f^2 (1 - p_f)^2,$$

(5.12)
$$\sum_{h \neq f,g} (E_0(hh, fg) + E_0(hf, fg) + E_0(hg, fg)) + \sum_{h,k \neq f,g} 'E_0(hk, fg) = \frac{3}{2} p_f p_g (1 - p_f - p_g)^2 \qquad (f \neq g);$$

(5.13)
$$\sum_{f=1}^{m} p_f^2 (1-p_f)^2 = \frac{3}{4} (S_2 - 2S_3 + S_4)$$

(5.14)
$$\sum_{f,g} {}^{\prime} {}^{\frac{3}{2}} p_f p_g (1-p_f-p_g)^2 = {}^{\frac{3}{4}} (1-5S_2+6S_3+2S_2^2-4S_4).$$

The sum of the last two expressions implies the whole probability of absolute non-paternity of father of first child against second child: (5.15) $E = \frac{3}{2} + \frac{25}{2} + \frac{352}{2} + \frac{352}{2}$

(5.15)
$$E_0 = \frac{3}{4} - 3S_2 + 3S_3 + \frac{3}{2}S_2^2 - \frac{9}{4}S_4$$

In particular case m=2, realized by MN blood type, the whole probability reduces to

(5.16)
$$E_{0MN} = \frac{3}{2}s^2t^2.$$

The case where recessive genes are existent can be discussed similarly, what will be illustrated by an example of ABO blood

type. Second children of O or AB alone are to be considered. In the former case, father AB of first child is deniable. First child is then either of types except O, and probabilities a posteriori of father AB, when first child is A, B, AB, are given by

(5.17)
$$\begin{aligned} \Pi(AB;A)/\bar{A} = \frac{q(p+r)}{p+2r}, \ \Pi(AB;B)/\bar{B} = \frac{p(q+r)}{q+2r}, \\ \Pi(AB;AB)/\bar{AB} = \frac{p+q}{2}, \end{aligned}$$

respectively. Hence, corresponding to (5.11), we get

(5.18)
$$\begin{array}{l} \frac{\frac{1}{2}pr^{2}(1+p+2r)\frac{q(p+r)}{p+2r}+\frac{1}{2}qr^{2}(1+q+2r)\frac{p(q+r)}{q+2r}+pqr^{2}\frac{p+q}{2}}{p+2r} \\ =pqr^{2}\Big(1+\frac{1}{2}\frac{p+r}{p+2r}+\frac{1}{2}\frac{q+r}{q+2r}\Big). \end{array}$$

In the latter case, father O of first child is deniable. First child is then either of types except AB, and probabilities a posteriori of father O, when first child is O, A, B, are given by

(5.19)
$$\Pi(O;O)/\bar{O}=r, \ \Pi(O;A)/\bar{A}=\frac{r^2}{p+2r}, \ \Pi(O;B)/\bar{B}=\frac{r^2}{q+2r},$$

respectively. Hence, corresponding to (5.12), we get

$$pqr^{2}r + \frac{1}{2}pq(p+r+2p^{2}+4pr)\frac{r^{2}}{p+2r} + \frac{1}{2}pq(q+r+2q^{2}+4qr)\frac{r^{2}}{q+2r}$$

$$(5.20) = pqr^{2}\left(1 + \frac{1}{2}\frac{p+r}{p+2r} + \frac{1}{2}\frac{q+r}{q+2r}\right).$$

The whole probability is, as a sum of (5.18) and (5.20), expressed in the form

(5.21)
$$E_{0ABO} = pqr^2 \left(2 + \frac{p+r}{p+2r} + \frac{q+r}{q+2r} \right).$$

Evidently, the corresponding probabilities on Q and Qq_{\pm} blood types vanish:

$$(5.22) E_{0Q} = E_{0Qq\pm} = 0.$$

By the way, we notice that between ABO and MN blood types the discontinuity of the same nature as in §6 of VII is observed at several places.

6. Maximizing distributions.

Problem to determine maximizing distribution for various probabilities derived in the present chapter can be discussed by usual manner.

The probability C_{ABO} given in (1.7) is maximized by the distribution

(6.1) $p=q=1/4, r=1/2; \bar{O}=1/4, \bar{A}=\bar{B}=5/16, \bar{A}\bar{B}=1/8;$

No. 6.] Investigations on Inheritance. XI₂. Absolute Non-Paternity.

the maximum being

 $(6.2) (C_{AB0})^{\max} = 1/16 = 0.0625.$

The probability C_{MN} given in (1.9) is maximized by the distribution

(6.3)
$$s=t=1/2; \quad \overline{M}=\overline{N}=1/4, \quad \overline{MN}=1/2;$$

the maximum being

(6.4) $(C_{MN})^{\max} = 1/8 = 0.1250.$

The probability (1.6) for general case attains, for the symmetric distribution

(6.5) $p_i = 1/m$ (i=1, ..., m),

its stationary value given by

(6.6) $(C)^{\text{stat}} = (1-1/m)(1-3/m+3/m^2),$

which would perhaps be the actual maximum as is the case for m=2. Next, the probability D_{ABO} given in (2.15) is shown to attain its maximum for the distribution

(6.7) p=q=0.2375, r=0.5250; $\bar{O}=0.2756, \bar{A}=\bar{B}=0.3058, \bar{AB}=0.1128,$

where the coinciding value of p and q is a root of a cubic equation (6.8) $36x^3-42x^2+29x-5=0;$

the maximum being

 $(6.9) (D_{AB0})^{\max} = 0.0263.$

The probability D_{MN} given in (2.17) is maximized again by the distribution (6.3); the maximum being

(6.10) $(D_{MN})^{\max} = 9/128 = 0.0703.$ The probability (2.14) for general case attains, again for the distribution (6.5), its stationary value

(6.11) (D)^{stat}= $(1-1/m)(1-5/m+12/m^2-37/4m^3+15/4m^4)$, which would perhaps be the acutal maximum.

Next, the probability D_{0ABO} given in (4.15) is maximized by the distribution

 $(6.12) \qquad p = q = 0.2194, \quad r = 0.5612;$

 $\bar{O}=0.3149, \quad \bar{A}=\bar{B}=0.2944, \quad \bar{AB}=0.0963,$

where the coinciding value of p and q is a root of a cubic equation (6.13) $72x^3-74x^2+31x-4=0$;

the maximum of (4.15) being

 $(6.14) (D_{0AB0})^{\max} = 0.0180.$

The probability D_{0MN} given in (4.17) is maximized again by the distribution (6.3); the maximum being

 $(6,15) (D_{0MN})^{\max} = 3/64 = 0.0469.$

The probability (4.14) for general case attains, again for the distribution (6.5), its stationary value

(6.16) $(D_0)^{\text{stat}} = (1-1/m)^2(1-5/m+21/2m^2-15/2m^3),$

321

which would be expected to be the actual maximum.

The corresponding problems on the probabilities C-D and D

 $\equiv 2C-D$ as well as C_0-D_0 and $D_0 \equiv 2C_0-D_0$ will be left to the reader. Last, we consider the probabilities derived in the preceding section. The probability given in (5.16) attains its maximum again

for the distribution (6.3); the maximum being

$$(6.17) (E_{0MN})^{\max} = 3/32 = 0.09375$$

The value of (5.15) for the distribution (6.5) becomes

(6.18)
$$(E_0)^{\text{stat}} = (3/4)(1-1/m)(1-3/m+3/m^2).$$

It would be noticed that the comparison between (1.6) and (5.15) (or, rather precisely, between (1.2), (1.3) and (5.11), (5.12)) implies a remarkable relation

(6.19)
$$E_0 = \frac{3}{4}C.$$

Consequently, as $m \to \infty$, E_0 tends to 3/4 while C to 1. However, in case of ABO blood type where a recessive gene is existent, such an identity does not hold. In fact, comparing (1.7) with (5.21), we get

$$E_{\scriptscriptstyle 0ABO} - rac{3}{4} C_{\scriptscriptstyle ABO} = rac{1}{2} pqr^2 \Big(rac{p}{p+2r} + rac{q}{q+2r} \Big),
onumber \ C_{\scriptscriptstyle ABO} - E_{\scriptscriptstyle 0ABO} = pqr^2 \Big(rac{1}{p+2r} + rac{1}{q+2r} \Big),$$

and hence the inequalities

$$(6.20) C_{ABO} > E_{0ABO} > \frac{3}{4} C_{ABO},$$

equality signs being excluded since the trivial distributions may be rejected.

We observe in (6.19) or (6.20) that, given a child, the nonpaternity proof is expected probabilistically at less rate by a father of a brother of the given child than by a man chosen at random. The deficiency of E_0 , compared with C, may be regarded as being caused by a positive correlation, intermediated by a common mother, between a type of the given child and possible types of a father of another child.

In conclusion, we remark that the *problems of proving absolute non-maternity* are the quite same as those on non-paternity at least from the probabilistic view-point. Non-maternity problems would be expected, for instance, when, in a case of succession to a property after death of father, a woman must be judged whether she is a true mother of a left child or not.

322