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90. On Cauchys Problem in the Large
for Wave Equations.

By Kosaku YOSIDA.
Mathematical Institute, Nagoya University.
(Comm. by Z. SUETUNA, M.J.A., Oct. 13, 1952.)

§ 1. Introduction. Let R be a connected domain of an orientable,
m-dimensional Riemannian space with the metric ds*= g;;(x)dx'da’.
We consider the wave equation

1.1) 2%9*=Axu(w,t),—oo<t<°°,
with Cauchy’s data
1.2) w(@,0)=f(), i’%’t”ﬂ=h(x).
Here the differential operator A=A, defined by
.3 AF@=b @) s a @) 2L o) e

is elliptic in the sense that the quadratic form b%(x)&&; is >0 for
S(€)*>0. Since the value of A,f(x) must be independent of the
3

local coordinates (z', ..., 2™) of the point x, the coefficients a'(x)
and b“(x) must be transformed, by the coordinates change x— 7,

respectively into
@) @@ =L@+ 58 ) and B@= 2 ).
X

For the sake of S1mpl1c1ty, we assume that ¢,(x), b¥(x), d'(x) and
e(x) are infinitely differentiable functions of the local coordinates
@ ooy ™.

Since we are concerned with the ewistence in the large of the
integral of (1.1)-(1.2), it will perhaps be necessary to rely upon
operator-theoretical method”. We here assume that the operator

A, is, as in the case of Laplacian, formally self-adjoint and non-
positive definite, Viz.

1.5 | (Ar@hde=| f@)an@)e | 4.5@)r@de=o

(dz=v'g(x) da'...da™, g(x)=det(g,()),
if f(x) and A(x) are twice continuously differentiable such that f(x)
vanishes outside a compact set contained in the interior of E. Then
we may integrate, by virtue of the Hilbert space technique, an
operator-theoretical variant of (1.1)-(1.2) It will next be shown,
by a parametrix consideration, that this operator-theoretical integral
is, for sufficiently smooth initial data (1.2), equivalent to the ordi-
nary integral of the genuine differential equation (1.1)-(1.2). It is
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to be noted that the Lemma 2 below, which is of the type of Pois-
son’s equation, may be of use in other problems relating to the
elliptie differential operator.

§ 2. An operator-theoretical integration. Let L be the linear
space of twice continuously difterentiable real-valued functions f(x)
vanishing outside compact set and satisfying a certain linear bound-
ary condition on the boundary 3R of R. It is assumed that the
boundary condition is chosen in such a way that we have

@.1) SR(Azﬂw»h(w)dFSRﬂw)(Amh(x))dw and
2.2) SR(Axf(x))f(w)dng for f, heL.

Such boundary condition is possible because of the assumption (1.5).
L is a pre-Hilbert space by the norm

2.3) 17 l=( f@rdeye=r, 2,
such that the completion L* of this linear normed space L is a real
Hilbert space L,(R).
We consider A=A, to be an additive operator defined on L=L*
into L*. Let A be a non-positive definite self-adjoint extension of

A. Such A may be defined as follows?: Let L’ be the completion
of the linear space L by the new metric

2.4) ANV =((=AL, )+ ().
Because of (2.2), we may identify L’ with a linear subspace of L°.
Then

(2.5) A is the contraction of the adjoint operator A* of A restricted

to the domain D(A)=L'N\D(A*), where D(A*) is the domain of A*.
We have, by (2.1),

(2.6) LED(A).
Let (2.7): —A=S°°sz(z)
0
be the spectral resolution of — A and let
2.8) (——J)W:S:A”’dE(A)

be the positive square root of the operator —A. Surely we have
(2.9) the domain D((— A)'*) of (— A)**2D(A), and hence, by (2.6),
2.6)’ LED(A)SD((A)").
Let us consider, for f and hel,
(2.10)  @&(x, t)=(cos (— A)"*)f (@) + (sin ((— A)"t) (= A)")h(x)
— S:cos EPAEW) F @) + S:(sin (220 2 AE D h().
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The convergence of the right hand integral is clear. We see, by (2.6)’,
that #(x, ¢) satisfies the operator-theoretical differential equation

2.11) 20w, t)=A,ii(x, t), where
dit(x, t)= strong lim 0@ (x, £+ 0) —U(x, t)).
—0
We have also (2.12): (x, 0)=f(x), oz, 0)=h(x).

Therefore we have:
Theorem 1. (2.10) is an operator-theoretical solution of Stokes’
type of the operator-theoretical variant (2.11)-(2.12) of (1.1)-(1.2).
Let D be the subset of L consisting of all the infinitely dif-

ferentiable functions f(z) such that f(x)e the domain D(A?) of the

operator A? for every ¢>0. Such is the case for infinitely dif-
ferentiable function f(x) when f(x) vanishes outside a compact set
contained in the interior of BR. From the definition (2.10) and (2.6)’,
we see that (2.13): if f and % are both in D, the function %(zx, t) given

by (2.10) is in the domain D(A2) for any ¢>0. We will show, in § 4,
that such %(x, ¢) is equal (x, ¢)-almost everywhere to a function u(x, t)
which is infinitely differentiable in (v, ¢), so that wu(x, ?) is an ordi-
nary integral of the genuine differential equation (1.1)-(1.2).

§3. The parametrixz for the iterated elliptic operator. The
hypothesis of the formal self-adjointness of the operator A=A, is
not needed in this §. Thus let

B.1)  Af@=t"@) 2L e @-L @) f@)
* 07 rod i
ox'ox ox

be the formally adjoint operator of A,. We will construect a para-
metrix for the iterated elliptic operator (8.2): A24-*. To this purpose,
let I'(P, Q)=7(P, Q)* be the square of the smallest distance between
the two points P=(z'}, ..., 2’™) and Q= (a2, ..., 2™) of R according to
the new metric (3.3): dr*=b,(x)da'da’, where (b, (x))=(0"(x))*.
We have then:

Lemma 1°. Let the dimension m be odd. For any vositive

integer m gnd for any even a=0, we may construct a parametric
W.(P, Q) for the operator A'=A.,:

8.4 W,(P,Q)= sz, (P, Q@ =-m1 VP, Q)] Kn(ct) Ln(a+ 2k),

where K, (a)=2""I"(«/2), L,(a+ 2k)=2°**""(a+ 2k+2—m)/2)
and Vi (P, Q) are infinitely differentiable in the vicinity of Q=P and
VP, P)=1
so that (8.5): A W,.(P, Q=W,.(P, Q)
+ (P, Q@B A W, (P, Q) Kn(@+2)Ly(a+2+2n)).
Proof. We introduce the normal coordinates y of Q= (", ..., 2™)
in the vicinity of P: p
o__ e da”
(36 y= @, ()

.
r=0
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Let (8.7): dr*=0,,(y)dy'dy’.
We have the well-known formulae

3.8) re, Q)=ﬂ¢;(0)y‘y’, ﬂij(?l)@/’=ﬂu(0)?/j-
By virtue of (3.8), the operator

3.9) Al =A,=pY() ta S+

(B W) =PFuw)™,
when applied to the function of the form f(I"(P, Q), ), may be writ-
ten as follows:

8.10) Af=ar 2L gy O +Maf + N(f), where

ol™ ol dy’
r r e
=B e D =m0, NG = @y,

The difterentiation in 4, and in N(f) are to be performed as if I
and y° are independent variables. Hence, by
@B.11) a/Kn(@+2)=1/K.(«), (@+2—m)/L,(a+2)=1/L,(a),

) ) n , (a+2k —m)[3
we obtain A W,.(P, Q=X KI‘(E{P-'_ g))L (@ +2k)

x {2y"—%+(—]g+2k——m+ 06>Vk + A;Vk—x(P,Q)}

F(P, Q)(w+2+‘m-m)lz ;Vn
K, (a+2)L,(a¢+2+2n)
I'V(P, Q)(w+2+2n-—m)l2 ,
«(P> Q@+
& Q K, (a+2)L, (a+2+2n)
if V.(P,Q) may be so determined that V. (P, Q) are infinitely dif-
ferentiable in the vicinity of Q=P, V_,(P, @)=0, VP, P)=1 and

(3.12) 2y%~ +ALr2—m)V(P, @+ 4V, (P, Q)

=0, (k=0,1, ..., n).
Such V,.(P, Q) exist by virtue of the order relation
(3.13) M=2m+0(y).
Proof. By putting y’=r7°, (3.12) is reduced to the ordinary
differential equation in » containing the parameters 7 :

3.12)’ 2r dvkg; 1) +(M(é”’7) +2k—m) VP, 1) = — AV, (P, 7).
Hence, by V_,(P,Q)=0 and V,(P,P)=1, we obtain
3.14) V= exp (——ST(Zt)'l(%l——m)dt),
0

V= Vor"‘grt"‘lV;‘A;Vk_ldt.
0

Corollary.
(3.15) A;q—i (P, Q) =W.(P, Q)+0(I"(P, Q)(2£+2+2n—m)/2)
AfW,(P, Q=0(I"(P, @¢**"~™) for P=Q.
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Next let P, be any inner point of R and consider, for sufficient-
ly small >0,
(8.16) U (P,Q)=W.(P,Qs(I"(P,Q)(I"(P,, P)), where §(x)=is in-
finitely differentiable in =0 such that §(x)=1 or 0 according as
r<e Or £>2¢.

Thus, in a certain vicinity of P,,
(B.17)  A7U(P, @=U,(P, Q)+ 0(I'(P, Q¢ *="=m0),
AU (P, Q)=0(I"(P, Q)™ for P<=Q.
After these preliminaries, we may prove an analogue of Pois-
son’s equation, viz.
Lemma 2. Let the dimension m be odd and =2, and let k(Q)
be € L. Then we have, for 2n=>m,

(3.18) C(P)k(P)=SR(A;ﬁ‘leq(P, Q)(A,k(@)AQ, where C(P) is in-

finitely differentiable and ==0 in a certain vicinity of P,.
Proof. We have, by Green’s integral theorem and (3.17),

[, 4P, )4, k@)Q

= lim | (AU, (P, @) (A, k(@)dQ
=0 R—{Q;I'(P, Q)=k}
= lim i (A (A 'U,L(P, Q)k(Q)AQ

0 B—{Q;I' (P, @=r}
rqg—1
#lim g LATCED pg)— 4, @) D Las
0 (P, Q)=£ oy oy
where v i3 the transversal direction defined by
(8.19) aa?; =V g@) @) eos (r, ), (G=L,2, ..., m)
and dS is the hypersurface element on I"(P, @Q)=¢.
We have, from (3.17),
AU, (P, Q) =0(I'(P, Q™™™ for P==Q,
AUL(P, Q) = (Al (4—m)[2)) [ (P, Q™™+ 0(I"(P, Q)€+,
Hence we have, when I'(P, @)=k tends to zero
AP D) @1 (a=m)2) @ =m) I 2/ ) 54 o5 )

=@4r@d-m)2)7@—-m)I'""B,(0)y*V/g(y) £ (y) cos (r,y’) (by (3.8))
=@r(4—m)[2)"C—m)y'I'"™*/g(y) cos(r,y’) (by (3.8))
=4I ((4—m)[2)7 @ —m) ™™/ g(r7) i“l(’?j)z (by putting y’=r7’).

Therefore we have SR(A;q‘leq(P, Q)(4,k(Q)dQ

= lim AT ((4—m)[2) (2 —m)KC-P =) S (7ydS
0 Bij(P)?J;ivjzl( (4—m)[2)""2~m)k 1/9(1/"; 7) jz—“_l( ) .

—Ur@-m2) ' @—mn/g® [ 3 (PydS,.

Bij(P)yiyl =17=1
This proves (3.16).
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§4. The differentiability of the operator-theoretical solution
(Q,t). We first remark that we are dealing with the case A’=A.
We will prepare two lemmas.

Lemma 8. For fixed t, there exists a sequence of functions
{k(Q)}=L such that

4.1) strong gzm E(Q)=u(Q, t),

tim | w(@(A4,k(@)d0=| w@(A,1Q,1)dQ for every w(@<L.

Proof. By #(Q, t)eD(/L,) and the definition (2.5) of A4, there
exists a sequence of functions {k,(Q)}<L such that strong liim k(Q)

=@(Q,t). We have, for any w(Q)eL,
tim| 0(Q)(4,k(@)aQ~ lim| (4,0@)@de

[, @@ nie=| w@d,uqQ Ha

by (2.1) and by the definition (2.5) of A.
Lemma 4. We have, for w(@)eL and for 1<i<q,

4.2) | Py A5 TP, Q)iPeL.

Proof. By (3.16), we see that the integral vanishes outside a
compact coordinate neighbourhood of P,. Moreover, by (3.4), (3.15),
(3.16) and (3.17), we see that the integral is twice continuously
differentiable in @ (Q.E.D.).

We have, by (3.18),

C(P)k(P)= S (A7U(P, @))(A,k(Q))dQ

in a certain vicinity of P,. Let w(Q)cL vanish outside this vieinity.
Letting ¢—> 0 in

[ e@rc@@ar - wear|| 4., ) ar@a} ,
we obtain, by the Lemma 3 and Lemma 4,
4.3) (P, t)=C(P)'1SR(A5‘1UM(P, Q)A,%(@Q, £)dQ almost every-
where in P in a certain vicinity of P,.

The function @#(Q, t) belongs to D(/L’,’) for every p>0. Thus we
see, by the Lemma 8, that there exists a sequence of functions
{k(Q)}<=L such that

(4.4) strong lim k(Q=A4,2(Q.¢),

}_ingRw(Q)(Ayk@(Q)) dQ = Snw(Q)(/i?,%(Q, £))dQ for every w(Q)eL.

Hence we have
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@5 | Arv.@ da@ vie=1lin| ArU.P, 9)k@de
almost everywhere in P. Also, by Green’s integral theorem,

[ 40P, @@aq

= lim [ (Ai'U, (P, Q))k(Q)dQ
>0 R—{Q;I'(P, Q)=k}
= lim I (A?v_zUzq(P7 Q))(Aykt(Q))dQ

20 R {Q; TI'(P, Q)=«}

...1- aAg'zUzq(P9Q)ki _ q=-2 g 6’64(Q)
e (P, {»J o (@ - (45U,.(P,Q) ¥ Dlas

~| ., @@ n@ue.
The last equality may be obtained, as in the proof of (3.18), from
the order relation (3.17):
Ai?U,o(P, Q)=0(I"(P, Q)“~™").
Hence, for any w(P)eL, we have

[, w@ap{| a5 v.P, Q)@ae}

~{ werar{] rv.@ o)A@}
Thus, by letting ¢— oo, we obtain, from (4.4), (4.5) and the Lemma 4,
[,(4U.P, @)(A,2Q, 0)d@={ (45U..(P, Q)(&(Q, 9)dQ
almost everywhere in P. Repeating the process, we obtain, from (4.3),

Theorem 2. Let the dimension m be odd and = 2, and let 2n = m

in the definition of U,(P, Q). Then, for the initial data f and h in
D, we have

4.6) %P, t)=C(P)“§RU2q(P, Q)(ff;iz‘a(Q, t))dQ almost everywhere in

P in a certain vicinity of P,.
Corollary. #(Q,t) s, for fixed t, equal almost everywhere to a
Sunction u(P,t) which is infinitely differentiable in P in a certain
vicinity of P, such that

@y up,9=c@r| U@ Q@ e,
Proof. We see that, if q=m,

u(P,)=C(P) VP, Q)(A5Q, 9)dQ

is, by (8.17), ¢ times continuously differentiable in P. As ¢ may be
taken arbitrarily large, the Corollary is proved.

In the above, we have assumed that the dimention m be odd
and >2. Let us consider the case in which m does not satisfy
this condition. In such a case, let m'>m be odd and =2. We
consider the function
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W@, )=u@', ..., y", t)exp (—@""y—...— ™))
of m' independent variables ¢,..., y™, y"*,..., y". By introduec-
ing the operator
@.7) A=Ay O
2"y 2™y
in place of the operator A=A,, we see, as above, that (4.6)" holds
good for u(Q,t) in this case also. Proof. A®™4(Q,t) belongs, for
fixed ¢, to the product Hilbert space
L x Ly(— 0o <gyy"* oo, n, — o0 {y™ < o0)
and hence we may apply the proof of the Theorem 2 above®.

Next since u(Q,t) belong to D(Jg) for every p>0, it is easy
to see, by (2.10), that

(4.8) (3:0,)" Au(Q, ) =A%"u(Q, t) for every r=0.
Thus we see, by (4.6)’, that u(P,t) is, for fixed P, infinitely dif-
ferentiable in ¢.

Moreover, since u(Q, t) is infinitely differentiable in @, we have
4.9) Azry(Q, t)=Ai"u(Q, t) almost everywhere in Q.
For, we have, by the definition (2.5) of A,
[, w@(dzu(@Q, )dQ={ (A @yu(@ Hia={ w@)Ayu@, n)aq,
when w(Q) is infinitely differentiable and vanishes outside a compact
set contained in the interior of R.
Therefore, in view of (2.11), we have proved finally the
Theorem 3. When f and h are in D, the function Wu(x,t) given

by (2.10) s (x, t)-almost everywhere equal to an infinitely differen-
tiable function w(x,t) satisfying (1.1)-(1.2).

1) Cf. K. Yosida: On the integration of diffusion equations in Riemannian
spaces, to appear in the Proc. Amer. Math. Soc.

2) See K. Friedrichs: Spektraltheorie halbbeschrinkter Operatoren, Math.
Ann. 109 (1934), 456-487. H. Fruedenthal: {Jber die Friedrichssche Fortsetzung
halbbeschrinkter Hermitescher Operatoren, Proc. Amsterdam Acad. 39 (1936),
832-833.

3) Suggested by M. Riesz: Lrintégrale de Riemann-Liouville et le probléme
de Cauchy, Acta Math. 81 (1948), 1-228. Cf. L. Schwartz: Théorie des distribu-
tions, I (1950), p. 47.

4) This argument may be called a method of descent. Cf. J. Hadamard: Le

probléme de Cauchy et les équations aux dérivees partielles linéaires hyperboliques,
(1932), p. 287.



