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1. Introduction

In the previous paper, we have found that the proper represen-
tation of the entropy of the continuous information was difficult and
that the uncertainty relation had to be taken into account in order to
complete this theory. However, the characteristics of the ensemble
are given by its autocorrelation function or its spectral density, so
that it is desirable to use them to represent its entropy. The key to
solve this problem seems to be given in Shannon’s paper where " the
entropy loss in linear filter " is discussed". This calculations are
based on the theory of the filter which is relatively simpler than the
theory of Wiener’s R.M.S. criterion.

Although Wiener’s theory is brilliant and strictly constructed, it
is not in vain to rewrite it from the information theory. Because the
prediction or filtering is to reduce the uncertainty of the system and
hence, there is some hope to translate the idea of the R.M.S. criterion
into the information theoretical representation.

2. Entropy of the Ensemble

Shannon has derived the formula representing the entropy loss
which occurred when the ensemble passed through a filter with char-
acteristic k(o). It is written as

1 I log lk(co)i dco, (2.1)Ho=/-/+
27rW

where H is the entropy of the input per degree of freedom and Ho
is that of the output.

This relation has been derived from the formula

f,,(t) f(t-r) dK(r), (2.2)

where fi(t) and fo(t) are input and output signal respectively. Fourier
transform of (2.2) gives

A(o) A(o) k(). (2. 3)
k() is given by

I?e-"" dK(t) k()
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The complex conjugate relation of (2.3) is similarly

A,(o) A(o, k(o). (2.4)
Combining two relations (2.3) and (2.4), we get

A0(o)I ]A (’)I- k(o)I"
or

o(o) q),(o)]k(o)[:. (2. 5)
Substituting (2.5) into (2.1), we may put

1 I (log (Po(w) log (w))do.Ho-//-
2W ,

From this relation we may generally conclude that next relation
will exist"

H 2rlw- I,lg (w) do + C (2. 6)

where C is an arbitrary constant. This result cannot be said to rep-
resent the entropy of the ensemble exactly. Because, there is no
information about the phase in this formula. However, the exact
representation is very difficult and this problem will be left in the
future.

3. Wiener’s R.M.S. Criterion and Principle of the
Minimum Entropy

The R.M.S. method which was developed by N. Wiener is very
powerful for the prediction or filtering of the time series. The princi-
ple of his method is as follows" We must choose a proper operator
K(t) so as to minimize the average power of the error signal

e(t) --fit + a) -I:{.f(t r) + .q(t r)} dK(r), (3.1)

where a is the delay time. That is"

lira 1 l’r (t)’:dt minimum.

We can translate this method into the information theoretical one;
if the operator K(t) is chosen so that the entropy of the error signal
may be minimum, we can make an optimum prediction or filtering.
While this principle seems to be very interesting and reasonable, we
cannot obtain the Wiener’s result because of the incompleteness of
the representation of the entropy. However, it is easily seen for this

principle to be almost exact even if using the expression (2.6). Let us
put the apriori entropy H and a posteriori one H2. The information
which is obtained after the observation is3

I= H- H2.
By (2.6), it becomes
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If we put
the corresponding information I is

1 (1 + 8’(),)do. (3. 2)
2r

When .() 0, we have the maximum information from this
ensemble. Now we consider the following experiment: When some
operater K(t) is chosen, at first. The corresponding error function,
which will still have some entropy to transmit some information, will
be obtained. Next, let this obtained error signal pass through the
filter, where we shall obtain more information. Repeating these ex-
periments, we shall have no more information at last. There may
still exist some entropy, but we cannot reduce it any more. There-
fore we may minimize the error spectrum by (3.2) where
replaced by q)(o). Now, in order to apply this principle to the
prediction or filtering, it must be necessary to choose the operator K(t)
which minimizes the erorr spectral density by means of (3.1). Now
the autocorrelation function of the error signal is

lim 1_ IV(t+a+s)-17[f(t-+s)+g(t-+s)J dK()

lim t+ o+ )f(t + a) -f(t + o+) [f(t r) + g(t r)] dK(r)

where e,(,) =.-m- t + ,)f(t) dt

nd

The spectral density of the error signal is
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(,) [(t +) (t) e-’’ d

d )lo e’"" (,+ oe K(q

,() k((,,() + (.,)) e’ k(o) (,() + ,:()) e

+ k()k() ().
By the condition g(-)=(r), () is real. Therefore we have the
same result if we vary k() or k() independently. Then,

,()=0=k() ()-(,,()+ ()) e-’

Hence it gives

e-.,.k()= (w) + ()
()

This is the same result as that obtained by Wiener when a becomes- in the limiting case.

4. Conclusions

The reason why we get the limiting case of Wiener’s is that the
entropy representation (2.6) is incomplete, because it has no infor-
mation about the part of the phase. Therefore, although this result
is not sufficient, it can be said that this principle will not be in-
correct. The extreme value of () is

,() Ik()! (,)
and is also the same result as Wiener’s. That is, this principle satis-
fies the condition of the minimum average power of the error signal.
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