46. On a Fundamental Lemma on Weakly Normal Rings

By Tadasi NAKAYAMA Mathematical Institute, Nagoya University (Comm. by Z. SUETUNA, M.J.A., May 13, 1953)

Let R be an (associative) ring. With a subset X of R we denote by X_r (resp. X_i) the set of right (resp. left) multiplications of the elements of X onto R. The commuter $V_{\mathfrak{A}}(X_r)$ of X_r in the absolute (module-) endomorphism ring \mathfrak{A} of R is nothing but the X-rightendomorphism ring of R. Now, if S is a subring of R and if the S_r endomorphism ring $V_{\mathfrak{A}}(S_r)$ of R (which certainly contains R_i) is generated over R_i by a family of R_i -semilinear endomorphisms of R, then we say that S is a weakly normal * subring of R. Recently the writer studied the case where the ring R and its weakly normal subring S are simple rings with minimum condition (or complete primitive rings **) and showed that then R is fully reducible as an R_l S_r -module⁸⁾; this enabled the writer to obtain a theorem of extension of isomorphisms of certain weakly normal subrings, which forms a generalization and a refinement of the theorems of Artin-Whaples¹⁾ and Cartan-Dieudonné⁴⁾, to establish a simple ring generalization of the Cartan-Jacobson³⁾⁶⁾ Galois theory (for sfields), and further, to extend Hochschild's ⁵ cohomology theory of simple algebras to simple rings⁸⁾⁹⁾¹⁰⁾. The purpose of the present short note is to observe that this fundamental lemma remains true also in case the subring S is not necessarily simple (or complete primitive) but merely semisimple. This extension entails a corresponding generalization in cohomology theory and has some bearings for Galois theory, though we shall not discuss these in the present note.

We prove thus

Theorem 1 (Fundamental lemma). Let R be a simple ring having unit element 1 and satisfying minimum condition. Let S be a weakly normal semisimple subring of R containing 1 and satisfying minimum condition. Then R is fully reducible as an R-left- and S-right-module.

Proof. Evidently R is S_r -fully reducible. Let

 $R = \mathfrak{N}_1 \oplus \mathfrak{N}_2 \oplus \cdots \oplus \mathfrak{N}_s$

be the idealistic decomposition of the S_r -module R; thus each \mathfrak{N}_i is homogeneously fully reducible with respect to S_r , and distinct \mathfrak{N}_i , \mathfrak{N}_j have no mutually isomorphic minimal S_r -submodules. The S_r -endo-

^{*)} Dieudonné 4), Nakayama 8)9)10).

^{**&}gt; With certain modification of definition and under certain restrictions.

morphism ring $V_{\mathfrak{A}}(S_r)$ of R is then the direct sum $V_{\mathfrak{A}}$ (

$$\mathfrak{l}(S_r) = V_1 \oplus V_2 \oplus \cdots \oplus V_s,$$

where each V_i is isomorphic, and may be identified, with the S_r endomorphism ring of \mathfrak{N}_i . Each \mathfrak{N}_i is V_i S_r-minimal^{*)}, or what is the same, $V_{\mathfrak{U}}(S_r)S_r$ -minimal.

Let n be a minimal S_r -submodule of \mathfrak{N}_1 , say. For any $a_i \in R_i$, \mathfrak{n}^{a_i} is S_r -submodule of R which is either 0 or S_r -isomorphic with n. So $\mathfrak{n}^{r_i} \subseteq \mathfrak{N}_1$. Hence \mathfrak{N}_1 , and similarly each \mathfrak{N}_i , is $R_i S_r$ -allowable. Each \mathfrak{N}_i has, together with R, an R_i -composition series, whence an R_iS_r -composition series. Take, for each *i*, a minimal $R_i S_r$ -submodule \mathfrak{m}_i of \mathfrak{N}_i

As S is, by our assumption, weakly normal in R, we have

$$V_{\mathfrak{A}}(S_r) = \sum R_i \gamma$$

with some R_i -semilinear endomorphisms γ of R. Consider the sum $\sum_{r} \mathfrak{m}_{1}^{r}$; each \mathfrak{m}_{1}^{r} is R_{i} -semilinearly and S_{r} -linearly isomorphic to \mathfrak{m}_{1} and is thus $R_{\iota}S_r$ -minimal. It is $V_{\mathfrak{U}}(S_r)S_r$ -allowable. Clearly $\sum_{i=1}^{r} \mathfrak{m}_{i}^{\mathfrak{T}}$ $\wedge \mathfrak{N} = 0$. As, on the other hand, \mathfrak{N}_1 is $V_{\mathfrak{A}}(S_r)S_r$ -minimal, we have $\sum_{r} \mathfrak{m}_{1}^{r} \supseteq \mathfrak{N}_{1}$. Hence \mathfrak{N}_{1} , together with $\sum_{r} \mathfrak{m}_{1}^{r}$, is $R_{i}S_{r}$ -fully reducible (and is a direct sum of mutually R_i -semilinearly and S_r -linearly isomorphic minimal $R_i S_r$ -submodules). Similarly each \mathfrak{N}_i is $R_i S_r$ -fully reducible, and our theorem is proved.

It follows in particular that the commuter $V_{R}(S)$ of S in R (with R, S as in Theorem 1), which is isomorphic to the $R_{i}S_{r}$ -endomorphism ring of R, is a semisimple ring with minimum condition.

When we deal, as above, with a simple ring R with unit element and with minimum condition, the above definition of the weak normality of a subring is equivalent to that the S-endomorphism ring of a minimal right-ideal r of R is generated over the R-endomorphism sfield K of r by a family of K-semilinear endomorphisms. For an ideal-primitive ring^{**)} R we employ this last definition of weak normality^{***)} (on making use of a minimal right-ideal r of R which is determined uniquely up to isomorphisms). Then we have

Theorem 1'. Let R be an ideal-primitive ring. Let r be a minimal right-ideal of R and K be its R-endomorphism sfield. Let S be a weakly normal distinguished****) semi-primitive*****) subring of R. Suppose that every none-zero KS-submodule of r contains a minimal KS-submodule. Then x is fully reducible as a KS-module (or, equivalently, the (unique) smallest two-sided ideal z of R is fully reducible as an R-left- and S-right-module).

Proof runs similarly as above, if r, K are considered in place of R, R_{i} .

*****) I. e. "semisimple" in Jacobson's sense.

^{*)} If a module m is homogeneously fully reducible with respect to an operator domain \mathfrak{S} and if \mathfrak{T} is the \mathfrak{S} -endomorphism ring of \mathfrak{m} , then \mathfrak{m} is $\mathfrak{S}\mathfrak{T}$ -minimal; see 8), § 1.

^{**)} A primitive ring we call ideal-primitive, when it possesses a faithful minimal right-ideal; then it possesses a faithful minimal left-ideal too 2)7).

^{***)} We could use in place of r the (unique) smallest two-sided ideal 3 of R (and in place of K the left-multiplication of R on \mathfrak{z}).

^{****)} We mean by this that r is a fully reducible right-module of the subring.

No. 5]

References

1) E. Artin-G. Whaples: The theory of simple rings, Amer. J. Math., 65 (1943).

2) G. Azumaya-T. Nakayama : On irreducible rings, Ann. Math., 48 (1947).

3) H. Cartan: Théorie de Galois pour les corps non-commutatifs, Ann. École Norm., 65 (1948).

4) J. Dieudonné: La théorie de Galois des anneaux simples et semi-simples, Comment. Math. Helv., 21 (1943).

5) G. Hochschild: Cohomology and representations of associative algebras, Duke Math. J., 14 (1947).

6) N. Jacobson: A note on division rings, Amer. J. Math., 69 (1947).

7) ——: On the theory of primitive rings, Ann. Math., 48 (1947).

8) T. Nakayama: Automorphisms of simple, complete primitive, and directly indecomposable rings, Ann. Math., 55 (1952).

9) —: Derivation and cohomology in simple and other rings. I, Duke Math. J., **19** (1952).

10) ——: Galois theory of simple rings, Trans. Amer. Math. Soc., 73 (1952).