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96. On Selberg’s Function
By Yoshikazu Epa

Department of Mathematics, Kanazawa University
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1953)

1. In a recent paper, A. Selberg has achieved an elementary
proof of Dirichlet’s theorem about primes in an arithmetic pro-
gression® (numbers in square brackets refer to the references at

the end of this note), and his proof is based upon the following
Selberg’s Inequality :

(1) xV(x) Stlog’p + 1 logplogg + O®),
P, p=AK) Pesz, Pe=A (k)

where

(2) Vo= 50 Dpoge® 2 pioge + O).

a<z, (@) =1 d d o(k)

For every positive integer &, 1 (k) and ¢ (k) are the Mobius function
and the Euler function respectively. p,q are primes and (%, )=1.

We shall give in this note the generalized forms of (1) and
(2) (Theorems 1, 2 and 8). Our method is based upon Selberg’s
original papers®, and Shapiro’s®. The umbral calculus is very
effective in our description of the calculations and results®. The
results of our previous paper® are used here without proofs.

2. Preliminary Lemmas and Notions

Lemma 1. For every integers & and ¢, the number theoretic
function [k]*’>0 with the following initial conditions: k=0, k=>4,
[0]F=1 for :=0,1, 1/|s|! for :< 0 and [k}’ =0 for & <4, is defined by
the recurrence formula [k}’ =[k—4]* + i[k—1]**. Then, we get [k}
=k!/(k—-1)! 1£0). [k]'(¢Z50). is said the factorial polynomial in
Ik degree <.

Lemma 2.

3 COEO) =% gy, tor k204,

where (f)= [k]!/q,! , k=¢>0 is the binomial coefficient.

Lemma 3. A, is a partition of # and if there are m, parts
equal to 1, m, parts equal to 2, m, parts equal to 3, etc., then the
part1t1on may be written as® 2,=(1"2728"...), m;=>0, and we put
m= Zm,, p)y=mljm! my! ...m =0 om).  We associate a
monom1al MRy )= M(As®1y . « «,T0) =271 252 . . .e» With a partition 4,.
Put A" A" (@)= ALy Xaye 0oy Xn) = gp(a,,) M(A,y x), then, we have

M= E x,A"" .
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If the number theoretic function f(5,k) is defined by the follow-
ing initial conditions: f(,!—1)=I for I>>2, f(l,7)=0 for i=>I, and
f(1,0)=0, and the krecurrence formula

-1
FGk) = k3 (=1 (P)weeifGr i)y 155 SE-2,
then f(j,k)=(—1)*" [k]*~? A*'~(y), where y;=x;/(j—-1)!, 1<5<n.

Proof. (Y. Eda®), lemmas 38,4,5 and 6.

We must develop the Bell’s umbral calculus a little, but it
will be reserved for another occasion for further particulars. The
functional umbra X(a) is denoted by the one-rowed matrix X(a)=
(X°(a), X*(a),...,X(a),...)=(XYa)), where X(a) (+=0,1,2,...) are
scalars (real numbers) or any number theoretic function of @, and
the (n+1)-th element of X(a) is denoted by (X(@)).. X(a)=(X(a),
X(4),...) is called a constant umbra. Equality of umbra is
matric equality and scalar product, aX(a) of «(scalar) and X(a) is
aX(a)=(aX"(a)). The umbral sum (difference) of X(a) and Y(a) is
X(e0) & X(a)=(X"(a) £+ Y"(a)). If X(a), Y(a),...,Z(a) are t distinct
umbrae, [X(a)® Y(a)® --- @ Z(a)]’ denotes the scalar P¥a) =
3 =‘(,l_j‘,,{t) X4a) ... Za). Note that exponents and suffixes

dodeeetd

6, 1 are to be indicated precisely in the same way as exponents
and suffixes >1. If an umbra X(a) in our region is transformed
into another umbra Y(a) by a mapping T, we write this fact as
follows : TX(a)=Y(a), Y (a)=TX%a). T is called an umbral oper-
ator. A scalar in the scalar product is an umbral operator.
The operator product T.T: of T, and T, is defined by T,T.X(a)=
T(T.X(a)). If we put T= 3| F(a) and TX(a)= ;ﬂ F(a)X(a)=

a€Q
(}'_.‘ﬂF‘(a)X’(a)), then T is treated as an umbral operator and
a€
we call this a Sl-operator. If 7T is T-invarient i.e. TA=A,
then T[X(a)PA'=[TX(a)®A]". I-operator of an umbra is defined

by the formula IX(a)=Y(a), Y”(a)=%%X““(a). If F(x)=(F(x))
and lim Fi(x)=F%a), (F(a)=(F%(a))), then we write lim F(x)=(lim

F)). And, still more, if F(z)=f(z)+ O(R'(x)), then we must write
F(x)=(f(2)®O0(R(x)).

Now, we define some > -operators as follows: G,=3>11,
— —_ asz
D,= 21, E,_a= E 1 ’ Aa:,a,)\ =d 2 1, Gz=Gzt“'(d)9 D,= al“'(d)’

dla sz, (@, a)=1 <, @ = M)
E‘x=Ex.a:“‘(d), Az==A,,U»(d), G;ck'_:Gx%r D;‘(:Da%’ E;:k’:Ex%! Af:Axl;
U(z)=G*L(d), K(a)=D*L(d), V(x)=E*L(d), W(x)=A*L(d), where
L(z) is the log i.e. Li(x)=1log'x. Then we have (as an oper-

ator product), E¥=G¥Dg.p(d). If we put G(a,x):DL(—z—) ,
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then
(8)  Auubla,o) =2 EL (ﬁ) @ 0(2) =% V(z) ® O(x) .
o d. o

If we use the >)-operator as an ordinary summation, there is no
confusion in our calculation. For example, D*1 =¢—§:Q=K° (a)
=K, E¥.1=VY(s)=V=0(), (E. Landau®, p. 568), V*(x)= V"=
O(L¥Y(x)), (Y. Eda®, lemma 11).

Lemma 4. N denotes the number of different prime factors
of @ and we put @(a,x)=1"5L<%>, n=ppy...p~, then we get 0(a,x)

)]

=k! ‘IIIL(pi) for N=k, 0*a,x)=0 for N>k. And we get

& N-1
Anar O4(0,2) =2 = Y[ 3= 1)/ ".0) 3 sy« 5005 @a- + 13 D)L (),
=0 1=0 Pyepy
where
0((!1 cee Oy Uy oo Qyy x)-—— 2 Lal(pl) e Lal(pl)

Gl ul
py +epy 'S, and =X(mod @

and d=z (mod a). (Y. Eda®), lemma 2 and lemma 14.
Lemma 5.

G*L(d) = ILx) ® CD O (%) ,

where C= lim (G}L(d)SIL(x)), which is called the Euler umbra and

C° denotes the ordinary Euler constant.
Proof. (E. Landau®), 27, Hilfssatz.
Lemma 6. (Stirling’s formula) G.L(d)=alL(x)Ok]]).
Proof. (Y. Eda®), lemma 7.
Lemma 7. IV(z) = O(L(2)) .
Proof. See Y. Eda?, lemma 11.

3. Proof of the Theorems
Lemma 8.
B%Ld) = KIL@) © IK® (K® €)@ 0 (1),
®

Proof.
E%, I(d) = G¥L(d) Deyy = (Ko Z ® 1)) = Ulw),
where
K. 7' = K., G¥, L{t) L*~(3)

= 1755 (=1 () R4 Do) + Ko ¢+ 0 (K1),
and so, we obtain from lemma 2,
U'a) = (6] K@) - ] K + [K@ CF +0 (H12).
Lemma 9. 1<1La -1,



No. 8] On Selberg’s Function 421

A2 L(d) = —aof- ([L(z) © k) ® O(L(z)) = -clT G.L(n) D O(L(x)) .
Proof. From lemma 6, we get
ATH@) = 33(H)LFHa) [L (_ﬁ-) o [z']]‘ + O(LH&))
- 2 [ om] + o).

Lemma 10.
B As,, 1d) = 2 1([ V) - 0] )@ 0w,
Lemma 11.
B L(%) = I([L@) © KD @ (Le) O KD NP o (H2).
Proof.
E5.L(%) = B ([L2) © L) = (Lix) © E*L@)) -

From lemma 7, we get the result.
Theorem 1.

(ver)a([verac|)ous =ow.

Proof. If F(zx) is any real valued functional umbra, defined
for all real #>0, and G(x) is defined by G(x)=E;,aF(%), then
Flo)=E..G (%) Put F(a)=«(L(x)) in this lemma, then

6@ =2 (1L @O K )@ ([Lwokaa | )@owe,
and we get our result.

Remark. We can solve this equality generally. In other words,
V(x) is represented by a permanent®, whose elements are AL(x),
(A is scalar), (Y. Eda®) lemma 12 and lemma 13).

Theorem 2.

17(@) = (L) © B ) ® 011)
where B'=[k]’ A(y), (A’ in lemma 3), y;=4//K(j—1), and A=IKO
([KDCD.
Proof. From our theorem 1, we get

EIV@) = ([ V@) © 41 ) ® Lix) ® 0(1).
Now, assume Vi(x)= :Z:i’ﬂ L(z)+O(1), then we get the recurrence

formula and initial conditions for v}, and we have easily from the
lemma 8 our desired form.
Theorem 3. (Selberg’s Inequality)

A,8(a,) = T V@) D 0),
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where 8(a,z) and V(x) are given by lemma 4, lemma 5 and theorem 2.
Proof. We have the result immediately from (8), lemma 5 and
theorem 2.%
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