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96. On Selbergs Function

By Yoshikazu EDA
Department of Mathematics, Kanazawa University

(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1953)

1. In a recent paper, A. Selberg has achieved an elementary
proof of Dirichlet’s theorem about primes in an arithmetic pro-
gression’ (numbers in souare brackets refer to the references at
the end of this note), and his proof is based upon the following
Selberg’s Inequality:

XV(x)= logp+ logplogq+ O(x),

where

(2) .(d).log x 2V(x) ,.x(.)= d d (kx log x + O(x)

For every positive integer k, (k) and (k) are the MSbius function
and the Euler function respectively, p, q are primes and (k,/)=1.

We shall give in this note the generalized forms of (1) and
(2) (Theorems 1, 2 and 3). Our method is based upon Selberg’s
original papers)), and Shapiro’s 7). The umbral calculus is very
effective in our description of the calculations and results ). The
results of our previous paper ) are used here without proofs.

2. Preliminary Lemmas and Notions

Lemma 1. For every integers k and i, the number theoretic
function [k]’0 with the following initial conditions" k___O, k__.i,
[0] 1 for i 0, 1, 1/ii!! for i 0 and [k] 0 for k i, is defined by
the recurrence formula [k]-- [k-i]’+ ilk-1]-. Then, we get [kj
=k !/(k-i)! (i 0). [k]’(i 0). is said the factorial polynomial in

k degree i.
Lemma 2., (- 1)’[i]"(0(’-i") {0i

or k =:l + ,
+., -1)’[k]-, for k + m,

where ()=[k]!/i!, k_i_O is the binomial coefficient.
Lemma 3. . is a partition of n and if there are m parts

equal to 1, m parts equal to 2, m parts equal to 3, etc., then the
partition may be written as ,=(1 2 3TM ...), m,_0, and we put

m=m, p(;,.)=m!/m m m, =(,....,). We associate a

monomial M(2,, )=M(a,,z,...,z,,)=x xT....x- with a partition a,,.
Put A"=A’(x)=A"(x, x,..., x,,) p(,,) M(a,, x), then, we have

A"= xA"-.
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If the number theoretic functionf(j,k) is defined by the follow-
ing initial conditions" f(l, 1-1)=l for 1_____2, f(l, i)--O for il, and
f(1,0)--0, and the recurrence formula

E (- 1) i), __A
then f(j,k)---.(- 1)-- [k]- A--(y), where y---x/(j- 1) !, l__j__n.

Proof. (Y. Eda)), lemmas 3, 4, 5 and 6.
We must develop the Bell’s umbral calculus a little, but it

will be reserved for another occasion tor further particulars. The
functional umbra X(a) is denoted by the one-rowed matrix X(a)--------
(X(a), X(a), ,X(a), ).--(X(a)), where X(a) (i=.O, 1, 2,...) are
scalars (real numbers) or any number theoretic function of a, and
the (n+l)-th element of X(a) is denoted by (X(a)),. X(a)=(X(a),
X(),...) is called a constant umbra. Equality of umbra is
matric equality and scalar product, ,X(a) of a (scalar) and X(a)is
aX(a) (aX’(a)). The umbral sum (difference) of X(a)and Y(a) is

X(a) X(a)(X?(a) : Y"(a)). If X(a), Y(a),. ., Z(a) are t distinct
umbrae, IX(a) k Y(a) Z(a)] denotes the scalar P(a)

(,,...,.)X(a) Z(a). Note that exponents and suffixes
i+... +It=i
0, 1 are to be indicated precisely in the same way as exponents
and suffixes 1. If an umbra X(a) in our region is transformed
into another umbra Y(a) by a mapping T, we write this fact as
follows" TX(a)----Y(a), Y(a)--TX(a). T is called an umbral oper-
ator. A scalar in the scalar product is an umbral operator.
The operator product T.T of T and T,. is defined by T,.TX(a)=
T(TX(a)). If we put T F(a) and TX(a)---- F(a)X(a)--

(, F(a)X’(a)), then T is treated as an umbral operator and

we call this a ,-operator. If T is T-invarient i.e. TA-=-A,
then T[X(a):+A]=[TX(a)A’. /-operator of an mbra is defined

1 .X.+(a). If F(x)-=-(F(x))by the formula IX(a)= Y(a), n+l
and limF(x)=F(a), (F(a)--((a))), then we write lim F(x)=(lim

/(x)). And, still more, if F’:(x)=f(x)+ O(R(x)), then we must write

F(x)= (f(x)O(R(x)).
Now, we define some -operators as follows" G--- 1,

/=E...(d), A==A.(d), G*=G D*=D
U(x)=G*L(d), K(a)=:O*L(d), V(x)=E*L(d), W(x)=.*L(d), where
L(x) is the log i.e. L(x)=logx. Then we have (as an oper-

ator product), E* *--GD. .(d). If we put O(a,x)=.DL
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then

-d -Z (R) o(x) =--a v(x) ()

If we use the -operator as an ordinary summation, there is no

confusion in our calculation. For example, * 1- (a)_K (a)

K, E*. 1 (x)= V= O(1), (E. Landau), p. 568), V(x)= V
O(L-(x)), (Y. Eda:), lemma 11).

Lemma 4. N denotes the number of different prime actors
of a and we put O(a,x)=DL n-pp. p, then we get O(a,m)

=k H L(p) for N=k, O(a,x)=O for Nk. And we get
k N-I

I) (....,) (,... ,,; ..., )]L-(),
I’""bere

a(... ,, ,,)= L(p)

a (o ). (Y. a>), lema 2 a ]ema I.

(g Ig( c o ],
where C= lim (GL(g)@IL()), which is called he Euler umbr nd

C denotes he ordinary Nuler eonsanL
ProoL (N. Landau), 7, Hilfssat.
gemma 6. (Sirling’s formula) GL(g)=[L(z)@[]]).
ProoL (Y. Nda), lemma 7.
Lemma 7. IV() O(L()).
ProoL See Y. Nda ’, lemma 11.

3. Proof of the Theorems

Lemma 8.

L(d) KIL(x) IK ([K C ) O
\ X )"

Proof.
E.. L(d) G*L(d) Dc,..,) ([KZ) 1)) U(x),

where
K,, Z K a** L*(t) L*-*()

l1

)t+l-j t+1 (L(x))[i]’ K2- C’ + 0( U(x) + K-
and so, we obtain from 1emma 2,

uffz) [k] KL+(x) [k]- K +[C? + O .. X
Lemma 9. l a 1,
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A.,., L(d) __x ([L(x) (9 kJ) @ O(L(x)) 1 GL(n) O(L(x))

Proof. From lemma 6, we get

AL(d) E ( )L-(a) L [i] + O(L(x))

([] + o(g(l.

Lemma 10.

([ 1)E.A,. L(d’) I V(x) [k] 0 (L(x))

Lemma 11.

Proof.

L ([L(x) L(d)]) ([L() E*m(d)]).

From lemma 7, we get the result.
Theorem 1.

Proof. If F(X) is any real valued functional umbra, defined

for all real x>0, and G(x) is defined by G(x)=E.,F(), then

() =(’()* )*(I ()** 1)* O(L(x))

and we get our result.
Remark. W zan solw this euality generally. In other words,

V(x) is represented by a permanent), whos elements are L(x),
( is szalar), ((Y. Eda)) lemma 12 and lemma 13).

Theorem 2.

IV() ([L(x) B]) 0(1)

where B=[k] A(y), (A in lemma 3), y=AJ/KO’-I), and A=IK
([gc]).

Proof. From our theorem 1, we get

( [ V(x) A ] ) L(x) 0(1).KIV(x)

Now, assume V{(x) 7{L(z)+O(1), then we get the recurrence

formula and initial conditions for , and we have easily from the
lemma 3 our desired form.

Theorem 3. (Selberg’s Inequality)

A O(a,z) V(x) O(z)a
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where 8(a,z)and V(x)are given by lemma 4, lemma 5 and theorem 2.
Proof. We have the result immediately from (3), lemma 5 and

theorem 2. )
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