113. On the Transformations Preserving the Canonical Form of the Equations of Motion

By Takashi Kasuga
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1953)

Introduction. In this paper, we shall prove that any transformation preserving the canonical form of the equations of motion can be composed of a canonical transformation and a transformation of the form $Q_{i}=\rho q_{i}, P_{i}=p_{i} i=1, \ldots, n$ where $\rho \neq 0$ is a constant. (For the precise formulation, see section 3,4.)

For the sake of completeness, we shall prove first some lemmas on matrices which will be used later.

1. We shall call a real regular matrix A of degree $2 n$, a real quasi-symplectic matrix (we abbreviate it as r.q.s.m.) with a multiplier ρ, if

$$
\begin{equation*}
\rho \sum_{i=1}^{n}\left(x_{i} y_{i+n}-x_{i+n} y_{i}\right)=\sum_{i=1}^{n}\left(x_{i}^{\prime} y_{i+n}^{\prime}-x_{i+n}^{\prime} y_{i}^{\prime}\right) \tag{1}
\end{equation*}
$$

for two arbitrary vectors $\left(x_{1}, \ldots, x_{22}\right),\left(y_{1}, \ldots, y_{2_{2}}\right)$, where ρ is a real number and

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
\vdots \\
x_{22}^{\prime}
\end{array}\right)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{22}
\end{array}\right) \quad\left(\begin{array}{c}
y_{1}^{\prime} \\
\vdots \\
\vdots \\
y_{22}^{\prime}
\end{array}\right)=A\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{22}
\end{array}\right) .
$$

A r.q.s.m. with the multiplier 1 is called a real symplectic matrix (we abbreviate it as r.s.m.). A real regular matrix A of degree $2 n$ is a r.q.s.m. with a multiplier ρ if and only if

$$
\begin{equation*}
\rho J=A^{*} J A \tag{2}
\end{equation*}
$$

where A^{*} is the transposed of A and

$$
J=\left(\begin{array}{cc}
0 & E_{n} \\
-E_{n} & 0
\end{array}\right)\left(E_{n} \text { is the unit matrix of degree } n\right)
$$

From (2), a multiplier of a r.q.s.m. is a non-vanishing real number.
A real matrix B of degree $2 n$ is called an infinitesimal real symplectic matrix (we abbreviate it as i.r.s.m.), if

$$
\begin{equation*}
J B+B^{*} J=0 \tag{3}
\end{equation*}
$$

If we write a real matrix B of degree $2 n$ in the form

$$
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right)
$$

where $B_{1}, B_{2}, B_{3}, B_{4}$ are matrices of degree n, then B is an i.r.s.m. if and only if

$$
\begin{equation*}
B_{4}=-B_{1}^{*}, \quad B_{3}=B_{3}^{*}, \quad B_{2}=B_{2}^{*} \tag{4}
\end{equation*}
$$

2. Lemma 1. Let $A(t), B(t)$ be real matrices of degree $2 n$ de-
pending on a parameter $t\left(t_{0} \leqq t \leqq t_{1}\right)$ and $B(t)$ be an i.r.s.m. for every t in the interval $t_{0} \leqq t \leqq t_{1}$. If $d A(t) / d t$ exists for $t_{0} \leqq t \leqq t_{1}$ and

$$
\frac{d}{d t} A(t)=B(t) A(t) \quad \text { for } \quad t_{0} \leqq t \leqq t_{1} \quad A\left(t_{0}\right)=A_{0}
$$

where A_{0} is a r.q.s.m. with a multiplier ρ, then $A(t)$ is a r.q.s.m. with the same multiplier ρ for any t in the interval $t_{0} \leqq t \leqq t_{1}$.

Proof. From

$$
\frac{d}{d t} A(t)=B(t) A(t)
$$

we have

$$
\frac{d}{d t} A^{*}(t)=A^{*}(t) B^{*}(t)
$$

Hence

$$
\begin{aligned}
& \frac{d}{d t}\left\{A^{*}(t) J A(t)\right\}=\left\{\frac{d}{d t} A^{*}(t)\right\} J A(t)+A^{*}(t) J \frac{d}{d t} A(t) \\
&=A^{*}(t)\left\{B^{*}(t) J+J B(t)\right\} A(t) \text { for } t_{0} \leqq t \leqq t_{1}
\end{aligned}
$$

Then by (3), we have

$$
\frac{d}{d t}\left\{A^{*}(t) J A(t)\right\}=0 \quad \text { for } \quad t_{0} \leqq t \leqq t_{1}
$$

On the other hand, by (2) $A^{*}\left(t_{0}\right) J A\left(t_{0}\right)=A_{0}^{*} J A_{0}=\rho J$. Hence $A^{*}(t)$ $J A(t)=\rho J$ for $t_{0} \leqq t \leqq t_{1}$ q.e.d.

Lemma 2. Let X be a matrix of degree $2 n$ with complex coefficients. If $X B=B X$ for all i.r.s.m. B of degree $2 n$, then X is of the form $\alpha E_{2 n}$, where α is a complex number and $E_{2 n}$ is the unit matrix of degree $2 n$.

Proof. A diagonal matrix

$$
\left(\begin{array}{ccccc}
\beta_{1} & & & & \\
& \ddots & & & 0 \\
& & \beta_{n} & & \\
\\
& & & -\beta_{1} & \\
0 & & & & -\beta_{n}
\end{array}\right)=B^{\prime}
$$

where $\beta_{i} i=1, \ldots, n$ are real numbers such that $\beta_{i} \neq 0$ and $\beta_{i} \neq \pm \beta_{j}$ for $i \neq j$, is an i.r.s.m. by (4) and its diagonal elements are all different between them. From $B^{\prime} X=X B^{\prime}$, we can easily conclude that X is a diagonal matrix.

A matrix

$$
\left(\begin{array}{rr}
B_{1} & E_{n} \\
E_{\imath} & -B_{1}^{*}
\end{array}\right)=B^{\prime \prime}
$$

where B_{1} is any real matrix of degree n, is an i.r.s.m. by (4). If we write

$$
X=\left(\begin{array}{ll}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)
$$

where X_{1} and X_{2} are diagonal matrices of degree n, the condition $B^{\prime \prime} X=X B^{\prime \prime}$ gives

$$
X_{2}=X_{1} \quad B_{1} X_{1}=X_{1} B_{1} .
$$

From the second of these formulas, we can conclude easily that X_{1} is a matrix of the form αE_{n}, since B_{1} is an arbitrary real matrix of degree n. Then by the first of the above formulas, we have $X=\alpha E_{2 n}$ where α is a complex number q.e.d.

Lemma 3. Let X be a regular real matrix of degree $2 n$. If $X B X^{-1}$ is an i.r.s.m. for every i.r.s.m. B of degree $2 n$, then X is a r.q.s.m.

Proof. Let B be any i.r.s.m. of degree $2 n$ and let K denote $X^{*} J X$. Then

$$
\begin{equation*}
K B K^{-1}=X^{*} J\left(X B X^{-1}\right) J^{-1}\left(X^{*}\right)^{-1} \tag{5}
\end{equation*}
$$

By the assumption, $X B X^{-1}$ is an i.r.s.m. Hence by (3)

$$
J\left(X B X^{-1}\right)=-\left(X B X^{-1}\right)^{*} J=-\left(X^{*}\right)^{-1} B^{*} X^{*} J
$$

Putting this in (5), we have

$$
K B K^{-1}=-B^{*}
$$

On the other hand by (3)

$$
J B J^{-1}=-B^{*}
$$

Hence if we put $L=J^{-1} K=J^{-1} X^{*} J X$, we have

$$
L B=B L \quad \text { for any i.r.s.m. } B \text { of degree } 2 n .
$$

Therefore by Lemma 2, L is of the form $\alpha E_{2 n}$ where α is a real number as L is a real matrix. Then $X^{*} J X=\alpha J$ q.e.d.
3. We shall call a connected open set in R^{n} a domain in R^{n}. In the following, we denote by G a domain in $R^{2 n+1}\left(q_{1}, \ldots, q_{n}\right.$, $\left.p_{1}, \ldots, p_{n}, t\right)$ and by G_{l}, the set of the points ($q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}$) of $R^{2 n}$ such that $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t\right) \in G . \quad G_{t}$ is open in $R^{2 n}$ for any t.

Let M denote a one to one mapping

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t\right) \rightarrow\left(Q_{1}, \ldots, Q_{n}, P_{1}, \ldots, P_{n}, t\right) \tag{6}
\end{equation*}
$$

of G onto some domain in $R^{2 n+1}$ such that $Q_{i}\left(q_{j}, p_{j}, t\right), P_{i}\left(q_{j}, p_{j}, t\right)$ are of class C^{2} and the Jacobian $\partial\left(Q_{i}, P_{j}\right) / \partial\left(q_{k}, p_{m}\right) \neq 0$ on G. For such M we denote by M_{t} the one to one mapping

$$
\left(q_{i}, p_{i}\right) \rightarrow\left\{Q_{i}\left(q_{j}, p_{j}, t\right), P_{i}\left(q_{j}, p_{j}, t\right)\right\}
$$

depending on t of G_{t} onto some open set in $R^{2 n}$ (if $G_{t} \neq 0$).
We shall call M a pseudo-canonical transformation containing the time (we abbreviate it as p.c.t.t.) with a multiplier ρ, if M_{t} satisfies the condition

$$
\begin{equation*}
\rho \sum_{i=1}^{n}\left[d p_{i} d q_{i}\right]=\sum_{i=1}^{n}\left[d P_{i} d Q_{i}\right] \quad \text { on } G_{t} \tag{7}
\end{equation*}
$$

for every t such that $G_{t} \neq 0$ where $\rho(\neq 0)$ is a constant independent of q_{i}, p_{i}, t. (Here [] means Cartan's exterior product.) We shall call a p.c.t.t. with the multiplier 1, a canonical transformation con-
taining the time (we abbreviate it as c.t.t.).
We denote by $M(\rho)$ the special p.c.t.t. with a multiplier ρ
$\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t\right) \rightarrow\left(\rho q_{1}, \ldots, \rho q_{n}, p_{1}, \ldots, p_{n}, t\right)$.
Then we can easily prove the following :
Lemma 4. Any p.c.t.t. M with a multiplier ρ can be represented as $M(\rho) M^{\prime}$ where M^{\prime} is a c.t.t.

We call a system of differential equations

$$
\begin{equation*}
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}} \quad i=1, \ldots, n \tag{8}
\end{equation*}
$$

a canonical system with a Hamiltonian $H\left(q_{i}, p_{i}, t\right)$, when $H\left(q_{i}, p_{i}, t\right)$ is defined and of class C^{1} and $\partial H / \partial q_{i}, \partial H / \partial p_{i} i=1, \ldots, n$ are of class C^{1} on a domain in $R^{2 n+1}$.

Let M be a mapping of the domain G as defined in (6) and the Hamiltonian $H\left(q_{i}, p_{i}, t\right)$ of (8) be defined in a neighbourhood of a point $\left(q_{i}^{0}, p_{i}^{0}, t^{0}\right) \in G$. If M transforms all the integral curves of (8) in a neighbourhood of ($q_{i}^{n}, p_{i}^{n}, t^{\prime}$) into integral curves of another canonical system

$$
\begin{equation*}
\frac{d Q_{i}}{d t}=\frac{\partial K}{\partial P_{i}} \quad \frac{\partial P_{i}}{d t}=-\frac{\partial K}{\partial Q_{i}} \quad i=1, \ldots, n \tag{9}
\end{equation*}
$$

with a Hamiltonian $K\left(Q_{i}, P_{i}, t\right)$ defined in a neighbourhood of $\left\{Q_{i}\left(q_{j}^{0}\right.\right.$, $\left.\left.p_{j}^{0}, t^{0}\right), P_{i}\left(q_{j}^{0}, p_{j}^{0}, t^{0}\right), t^{0}\right\}$, then we say that M preserves the canonical form of (8) and transforms (8) into (9), in a neighbourhood of ($q_{i}^{0}, p_{i}^{0}, t^{0}$). If M preserves the canonical form of every canonical system with a Hamiltonian defined on a domain $G^{\prime} \subset G$, in a neighbourhood of every point belonging to G^{\prime}, then we say that M preserves the canonical form (in G).

It is well-known that a c.t.t. and $M(\rho)$ both preserve the canonical form ${ }^{1)}$. Hence by Lemma 4, a p.c.t.t. preserves the canonical form. We shall prove the converse of this proposition in the following.
4. Let $\left(q_{i}^{0}, p_{i}^{0}, t^{0}\right)$ be any point in the domain G and the Hamiltonian $H\left(q_{i}, p_{i}, t\right)$ of (8) be defined in a neighbourhood of $\left(q_{i}^{0}, p_{i}^{0}, t^{0}\right)$. If (u_{i}, v_{i}) belongs to a neighbourhood in $R^{2 n}$ of $\left(q_{i}^{0}, p_{i}^{0}\right)$, then we have a unique solution of (8), $q_{i}=\varphi_{i}\left(t, u_{j}, v_{j}\right) \quad p_{i}=\psi_{i}\left(t, u_{j}, v_{j}\right) \quad i=1, \ldots, n$ defined for t in a neighbourhood of t^{0} such that $u_{i}=\varphi_{i}\left(t^{0}, u_{j}, v_{j}\right) v_{i}=$ $\psi_{i}\left(t^{0}, u_{j}, v_{j}\right) i=1, \ldots, n$. We call such ϕ_{t}, ψ_{i} the characteristic functions of (8) at ($q_{i}^{0}, p_{i}^{0}, t^{0}$).

We denote by $S\left(t, u_{i}, v_{i}\right)$ the functional matrix of the mapping $T_{t}:\left(u_{i}, v_{i}\right) \rightarrow\left\{\phi_{i}\left(t, u_{j}, v_{j}\right), \psi_{i}\left(t, u_{j}, v_{j}\right)\right\}$

$$
\left(\begin{array}{c|c}
\frac{\partial \varphi_{i}}{\partial u_{j}} & \frac{\partial \varphi_{i}}{\partial v_{j}} \\
\hline \frac{\partial \psi_{i}}{\partial u_{j}} & \frac{\partial \psi_{i}}{\partial v_{j}}
\end{array}\right) .
$$

By the assumption that $\partial H / \partial p_{i}, \partial H / \partial q_{i}$ are of class C^{1}, we can easily prove the following ${ }^{2)}$:

Lemma 5.

$$
\begin{equation*}
\left(\frac{\partial S}{\partial t}\right)_{0}=\left(\left.\frac{\left(\frac{\partial^{2} H}{\partial p_{i} \partial q_{j}}\right)_{0}}{-\left(\frac{\partial^{2} H}{\partial q_{i} \partial q_{j}}\right)_{0}} \right\rvert\, \frac{\left(\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}\right)_{0}}{-\left(\frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}\right)_{0}}\right) \tag{10}
\end{equation*}
$$

where () , means the value of a function for $t=t^{0}, u_{i}=q_{i}^{0}, v_{i}=p_{i}^{0}$ or for $t=t^{\prime}, q_{i}=q_{i}^{0}, p_{i}=p_{i}^{0}$ according to its arguments.

Let M be a mapping of G as defined in (6). Now we assume that M preserves the canonical form. Then, in a neighbourhood of ($q_{i}^{0}, p_{i}^{0}, t^{0}$), M transforms (8) into another canonical system (9) with a Hamiltonian $K\left(Q_{i}, P_{i}, t\right)$ defined in a neighbourhood of $\left\{Q_{i}\left(q_{j}^{0}\right.\right.$, $\left.\left.p_{j}^{0}, t^{\eta}\right), P_{i}\left(q_{j}^{0}, p_{j}^{0}, t^{0}\right), t^{0}\right\}$. We put $Q_{i}^{0}=Q_{i}\left(q_{j}^{0}, p_{j}^{0}, t^{0}\right) P_{i}^{0}=P_{i}\left(q_{j}^{0}, p_{j}^{0}, t^{n}\right)$.

If (U_{i}, V_{i}) belongs to a neighbourhood in $K^{2 n}$ of $\left(Q_{i}^{0}, P_{i}^{0}\right)$ and t belongs to a neighbourhood of t^{0}, then we can define the characteristic functions of (9) at ($Q_{i}^{0}, P_{i}^{0}, t^{0}$)

$$
Q_{i}=\Phi_{i}\left(t, U_{j}, V_{j}\right) \quad P_{i}=\varphi_{i}\left(t, U_{j}, V_{j}\right) \quad i=1, \ldots, n
$$

as they are defined for (8) before.
We denote by $\mathfrak{S}\left(t, U_{i}, V_{i}\right)$ the functional matrix of the mapping $\mathfrak{T}_{t}:\left(U_{i}, V_{i}\right) \rightarrow\left\{\Phi_{i}\left(t, U_{j}, V_{j}\right), \Psi_{i}\left(t, U_{j}, V_{j}\right)\right\}$. Then by Lemma 5

$$
\begin{equation*}
\left(\frac{\partial \subseteq}{\partial t}\right)_{0}=\left(\left.\frac{\left(\frac{\partial^{2} K}{\partial P_{i} \partial Q_{j}}\right)_{0}}{-\left(\frac{\partial^{2} K}{\partial Q_{i} \partial Q_{j}}\right)_{0}} \right\rvert\, \frac{\left(\frac{\partial^{2} K}{\partial P_{i} \partial P_{j}}\right)_{0}}{-\left(\frac{\partial^{2} K}{\partial Q_{i} \partial P_{j}}\right)_{0}}\right) \tag{11}
\end{equation*}
$$

where ($)_{0}$ denotes the value of a function for $t=t^{0}, U_{i}=Q_{i}^{0}, V_{i}=$ P_{i}^{0} or for $t=t$), $Q_{i}=Q_{i}^{0}, P_{i}=P_{i}^{0}$ according to its arguments.

From the assumption that M transforms (8) into (9) in a neighbourhood of ($q_{i}^{0}, p_{i}^{0}, t^{0}$), it follows easily that

$$
\begin{equation*}
M_{t} T_{t} M_{i 0}^{-1}\left(U_{i}, V_{i}\right)=\mathfrak{T}_{t}\left(U_{i}, V_{i}\right) \tag{12}
\end{equation*}
$$

for any (U_{i}, V_{i}, t) in a neighbourhood of ($Q_{i}^{0}, P_{i}^{0}, t^{0}$).
Let us denote by $N\left(t, q_{i}, p_{i}\right)$ the functional matrix of the mapping $M_{t}:\left(q_{i}, p_{i}\right) \rightarrow\left\{Q_{i}\left(g_{j}, p_{j}, t\right), P_{i}\left(q_{j}, p_{j}, t\right)\right\}$. Then by (12)

$$
\begin{equation*}
N\left(t, q_{i}, p_{i}\right) S\left(t, q_{i}^{0}, p_{i}^{0}\right)\left\{N\left(t^{0}, q_{i}^{0}, p_{i}^{0}\right)\right\}^{-1}=\Im\left(t, Q_{i}^{0}, P_{i}^{0}\right) \tag{13}
\end{equation*}
$$

for any t in a neighbourhood of t^{0}, where

$$
q_{i}=\varphi_{i}\left(t, q_{j}^{0}, p_{j}^{0}\right) \quad p_{i}=\psi_{i}\left(t, q_{j}^{0}, p_{j}^{0}\right)
$$

If we differentiate both sides of (13) with respect to t and put $t=t^{0}$, then we have

$$
\begin{align*}
\left(\frac{\partial N}{\partial t}\right)_{0}(N)_{0}^{-1} & +\sum_{i=1}^{n}\left(\frac{\partial H}{\partial p_{i}}\right)_{0}\left(\frac{\partial N}{\partial q_{i}}\right)_{0}(N)_{0}^{-1}-\sum_{i=1}^{n}\left(\frac{\partial H}{\partial q_{i}}\right)_{0}\left(\frac{\partial N}{\partial p_{i}}\right)_{0}(N)_{0}^{-1} \\
& +(N)_{0}\left(\frac{\partial S}{\partial t}\right)_{0}(N)_{0}^{-1}=\left(\frac{\partial S}{\partial t}\right)_{0} \tag{14}
\end{align*}
$$

considering that $q_{i}^{0}=\phi_{i}\left(t^{\prime}, q_{j}^{0}, p_{j}^{0}\right) \quad p_{i}^{0}=\psi_{i}\left(t^{0}, q_{j}^{0}, p_{j}^{0}\right)$ and $\left(\partial \varphi_{i} / \partial t\right)_{0}=(\partial H /$ $\left.\partial p_{i}\right)_{0},\left(\partial \psi_{i} / \partial t\right)_{v}=-\left(\partial H / \partial q_{i}\right)_{v},(S)_{v}=E_{2 n}$.

In (14), the right side ($\partial \varsigma / \partial t)_{0}$ is always an i.r.s.m. by (11), (4).

If we take $-\sum_{i=1}^{n} a_{i} q_{i}+\sum_{i=1}^{n} b_{i} p_{i}$ as H, then $\left(\partial H / \partial q_{i}\right)_{0}=-a_{i}\left(\partial H_{/} \partial p_{i}\right)_{0}$ $=b_{i}$ and $(\partial S / \partial t)_{0}=0$ by (10). Hence by (14)

$$
\left(\frac{\partial N}{\partial t}\right)_{0}(N)_{0}^{-1}+\sum_{i=1}^{n} b_{i}\left(\frac{\partial N}{\partial q_{i}}\right)_{0}(N)_{0}^{-1}+\sum_{i=1}^{n} a_{i}\left(\frac{\partial N}{\partial p_{i}}\right)_{0}(N)_{0}^{-1}=\left(\frac{\partial \subseteq}{\partial t}\right)_{0}
$$

where a_{i}, b_{i} are arbitrary real numbers. Hence $(\partial N / \partial t)_{0}(N)_{0}^{-1}$, $\left(\partial N / \partial q_{i}\right),(N)_{0}^{-1}, \quad\left(\partial N / \partial p_{i}\right)_{0}(N)_{0}^{-1}$ are i.r.s.m. From this by (14), $(N)_{0}(\partial S / \partial t)_{0}(N)_{0}^{-1}$ is always an i.r.s.m. and by (10) if we take a suitable quadratic form in p_{i}, q_{i} as H, we can turn $(\partial S / \partial t)_{0}$ into an arbitrary i.r.s.m. Hence by Lemma $3,(N)_{0}$ is a r.q.s.m.

Thus we have proved that $N\left(q_{t}, p_{t}, t\right)$ is a r.q.s.m. and $(\partial N / \partial t) N^{-1}$, $\left(\partial N / \partial p_{i}\right) N^{-1},\left(\partial N / \partial q_{i}\right) N^{-1}$ are i.r.s.m. for any point $\left(q_{i}, p_{i}, t\right) \in G$. From this we can prove easily that ($d N / d s$) N^{-1} is an i.r.s.m. along any curve $q_{i}=q_{i}(s), p_{i}=p_{i}(s), t=t(s) s_{0} \leqq s \leqq s_{1}$ in G with continuous $q_{i}^{\prime}(s), p_{i}^{\prime}(s), t^{\prime}(s)$. On the other hand N is a r.q.s.m. for any (q_{i}, p_{i}, t) $\in G$. Hence by Lemma $1, N$ is a r.q.s.m. with the same multiplier along any such curve.

Since G is a domain, we can join any two of its points by a polygonal line. Therefore $N\left(q_{i}, p_{i}, t\right)$ is a r.q.s.m. with the same multiplier ρ for any $\left(q_{i}, p_{i}, t\right) \in G$. This means by (1), (7) that M is a p.c.t.t. Thus we have proved the following :

Theorem. Let M be a one to one mapping $\left(q_{i}, p_{i}, t\right) \rightarrow\left(Q_{i}, P_{i}, t\right)$ of a domain G in $R^{2 n+1}$ onto some domain in $R^{2 n+1}$ with $Q_{i}\left(q_{j}, p_{j}, t\right)$, $P_{i}\left(q_{j}, p_{j}, t\right)$ of class C^{2} and with the Jacobian $\partial\left(Q_{i}, P_{j}\right) / \partial\left(q_{k}, p_{m}\right) \neq 0$ on G. M preserves the canonical form in G if and only if M is a pseudo-canonica! transformation containing the time.

By this theorem and Lemma 4, we have determined the form of the transformations preserving the canonical form of the equations of motion.

References

1) Cf. Handbuch der Physik, 5, 97-100 (1927) (Julius Springer, Berlin).
2) Cf. E. Kamke, Differentialgleichungen Reller Funktionen (1930), § 18, Satz 1.
