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112. On Completeness o[ Uniform Spaces

By Hidegor5 NAKANO
(Comm. by K. KUNU6, M.J.A., Nov. 12, 1953)

Let R be an abstract space. For a system of mappings ax of
R into uniform spaces S, ( e A), the weakest uniformity on R for
which all o,(e A} are uniformly continuous, is called the weak
uniformity of R by ( e A). Concerning the completeness of the
weak uniformity we have"

Theorem I. Let the uniformities 11 of S( e A) be separative
and complete. In order that the weak uniformity of R by a system
of mappings ax of R into Sx ( A) be complete, it is necessary and
sucient that for a system of points xx S. ( e A) if

(z0 o
for every finite number of elements a A. and U tl(u=l,2,...,n),
then we can find a point x R for which a (x)=x for .every a A.

The purpose of this paper is to give some generalization of
this Theorem I and its applications.

For a uniform space R with uniformity 3, a system of map-
pings a (/ F} of R into a uniform space S with uniformity 11 is
said to be equi-con$inuous, if for any U 11 we can find V 3 such
that

a (V (x)) U (a(x)) for every x R and /e F.
With this definition we have
Theorem II. Let the uniformity llx of Sx ( A) be separative

and complete. For a double system of mappings ar,x of an abstract
space R into Sx ( F,, A), therv exists the weakest uniformity on
R for which ar,x ( I) is equi-continuous for every A, and in
order that this uniformity on R be complete, it is necessary and
suglcient that for a system of points xr, e S ( e i-’, e A) if

(u., o

for ever fie nmber of deme A U (=1,2,... ,),
then ’we can find a point x R such that

x, a, (x) for all 1" A

1) H. Nakano: Topology and linear topological spaces, Tokyo Math. Book Ser.
II, Tokyo (1951), 35 Theorem 8. In the present paper we make use of terminologies
and notations in this book. This book will be denoted by TLTS.
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In order to prove this Theorem II, we shall define power of
a uniformity. Let S be a uniform space with uniformity 1. For
another abstract space A, considering every system x e S( e A) a
point ($,)e, we obtain a space, which is called the power of S by
A and denoted by S. For each Ue 1, putting

U() {(y.) y U(x) for every e A },
we obtain a connector U in S,. Furthermore we see easily that
there exists uniquely a uniformity on S of which U(Ue ll) is a
basis. This uniformity on S is called the power of by A and
denoted by 1. With this definition we can prove easily that if l
is separative, then .’ also is separative and if 1t is complete, then

also is complete.
For a system of mappings a( e A) of a uniform space R into

a uniform space S with uniformity , it is evident by definition
that ( e A) is equi-continuous if and only if the mapping a of
R into the power S with uniformity :

(x) (, (x))e S (x R)
is uniformly continuous. Therefore for a system of mappings ,
of an abstract space R into uniform spaces S( e I, eA), the
weak uniformity of R by the system of mappings of R into the
uniform spaces S( e A)

a,(x) (a-,, (x))re Sr (x R)
is the weakest uniformity on R for which a,(7 F,) is equi-con-
tinuous for every A. Therefore we conclude Theorem II im-
mediately from Theorem I.

In Theorem II, if all uniform spaces S,( A) coincide with a
complete separative uniform space S with uniformity , and for
a system of points xr, e S( e F,, A) if

H ,.-(U (z,)) 0

for every finite number of elements A. and U (=1,2,...,n),
then ,=,,, implies x,x=x,,,, because 1I is seperative by
assumption. Therefore we conclude from Theorem II

Theorem III. Let ( A) be a system of mappings of an abstract
space R into a uniform space S with a complete separative uniformity. For a system of subsets Ar A(7 F) there exists the weakest
uniformity on R for which ( e A) is equi-continuous for every

F, and if A.= Av and for any %, e I’ we can find an element

F such tha AvA. A, then in order that this weakest uni-

formity on R be complete, it is necessary and scient that for a
system of points x e S( A) if- (U (x,)) o
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for every F and U 1, then we can find a point x R such that
a(x)-x for every A.

Let 2 be the totality of mappings of an abstract space R into
a uniform spaco S which a complete separative uniformity ..
Every point xR may be considered a mapping of 92. into S as
a (x) e S(a e I). For a system of subsets RR( A) there exists
by Theorem III the weakest uniformity on I for which R, is
equi-continuous as a .system of mappings for every A. This
weakest uniformity on 2 is complete), because for any system of
points y S(x R) there exists obviously a e ?I for which a(x)---y
for every x R.

A mapping a of R into S is said to be bounded in a subset
RoaR, if the image a(Ro) is a bounded set ) of S. For a uniformity
on if R, is equi-continuous as a system of mappings of I into
S, then we see easily by definition that every convergence by a
Cauchy system in I is a uniform convergence as mappings of R
into S. Therefore on the totality of those mappings of R into S
which are bounded in R, for every e A, the weakest uniformity
for which R, is equi-continuous for every A, is complete. W
conclude further that if R is a topological space, then on the
totality of those mappings of R into S which are continuous in R
by the relative topology for every A, the weakest uniformity
for which R is equi-continuous for every e A, is complete. Fur-
thermore we obtain likewise that if R is a uniform space, then
on the totality of those mappings of R into S which are uniformly
continuous in R by the relative uniformity for every A, the
weakest uniformity for which Rx is equi-continuous for every A,
is complete.

II

Let R be a linear space and S a linear topological space with
linear topology . A system of linear operators T,( A) on R into
S is said to be bounded, if the system Tx( A) is a bounded set
of S for every x R. For a bounded system of linear operators
T,(e A} on R into S we see easily that there exists uniquely a
linear topology on R of which

II {x Tx . V} V . )
,.A

is a basis. Furthermore we see easily that the induced uniformity
from this linear topology on R is the weakest uniformity on R for

2) This fact was proved by N. Bourbaki, Topologie gndrale, Vol. 3, Chapter
10, espaces fonctionnels, Paris (1949).

3) TLTS 32.
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which T;.( e A) is equi-continuous. This linear topology on R is
obviously convex, if is convex. Therefore, recalling Theorem 5
in TLTS 55, we obtain by Theorem III

Theorem IV. Let T( A.) be a system of linear operators o
a linear space R into a linear topological space S with a complete
separative linear topology . For a system of subsets A( F),
if T( ) is a bounded system for every F, then there eists
uniquely a linear topology on R whose induced uniformity on R
the weakest uniformity for which %.( ) is equi-continuous for
every 1 Furthermore A= and for any , F we can

find an element F such that , then in order that this

linear topology on R be complete, it is necessary and sucient that

for a system of elements x S( ) f

which Tx=x for every A.
Let R be an abstract space and S a linear topological space

with a complete separative linear topology . For a subset RR
a mapping a of R into S is said to be bounded if he image a (R0) is

a bounded set of S. For a system of subsets RR( A), denoting
by the totality of those mappings of R into S which are bounded
in R for every A, we obtain a linear space I, defining

(aa + )(x)= a(x) + (x) (x R)
for every a, l and real numbers a,. Furthermore every point

x R may be considered a linear operator on R into S as a(x) S
(a 2) and R is a bounded system of linear operators for every
A. For a system of elements xS(yR) if

{a: (U)V+x}0

for every A and V, then x(yR) is a bounded set ors for
every A, and hence putting ao(y)=x for yR and

for every other point y, we have a ?I. Therefore we obtain by
Theorem IV

Theorem V. Let R be an abstract space and S a linear topo-
logical space with a complete separative linear topology . For a

system of subsets RR( A) such that for any , A we can find
an element A for which R RR, denoting by ?I the totality

of those mappings of R into S which are bounded in R for every

A, we obtain a complete linear topologica space ?I such that
( + ) (x) a(x) + (x) (x R)

for every , ?I and real numbers ,, and
{ a(R) V} ( , V )
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is a basis of . Furthermore if is convex, then . also is convex.
If R is a linear space and for any ,. A and real numbers, we can find an elemen A such Cha aRh RR, hen,

denoting by he oality of hose linear operators on R into S
which are bounded in R for every A we see easily ha

r {. (y) v + x} o
for every A and V implies

for every y,y e R and real numbers ,B. Therefore we obtain

further
Theorem VI. Let R be a linear space and S a linear topological

space with a complete separative linear topology . For a system
of subsets RCR( A) such that for any , A and real numbers, we can find an element A such that aR, BR,R, denoting

by the totality of those linear operators on R into S which are
bounded in R for every A, we obtain a complete linear topological
space such that

{T" TR V} (e A, V )
is a bass of . Furthermore if is convex, then also is convex.

This Theorem VI is a generalization of Theorems 1 and 3 in

TLTS 67.


