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109. Note on Dirichlet Series. XI.
On the Analogy between Singularities and Order-curves

By Chuji TANAKA
Mathematical Institute, Waseda University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1963)

(1) Introducuon. Let us put
1.1) F(o)= Za,.exp( W8) (8=a+it, 0S4 <<t <A+ ).
0. Szasz has proved the next theorem, which is a generalization of
Hurwitz-Pélya’s theorem (E. Landau®, p. 86).

O. Szasz’s Theorem (0. Szasz®, p. 107). Let (1. 1) have the finite
simple convergence-abscissa o,. If lim log n/i,=0, then there exists

n>+ °°
a sequence {€.} (e.= £ 1) such that 2 O €, €Xp(—4.8) has o=o0, as
the natural boundary.

The author proved recently the following theorem of the
same type:

Theorem (C. Tanaka®, p. 808). Let (1.1) have the finite simple
convergence-abscissa o,. If lim log n/A,=0, then there exists a

Dirichlet series }:.‘ b, exp (—A.8) having c=o, as the natural boundary
such that "

@) |b=la.| »=1,2,...) and lim |arg(a.)—arg(b,)|=0
or e

(b) arg(,)=arg(a,) (n=1,2,...) and hm |baan| =

In this note, we shall establish analogous theorems concerning
order-curves. We first begin with

Definition. Let (1. 1) be uniformly convergent in the whole plane.
Then, we call the analytic curve C extending to o= —  the order-
curve of (1. 1), provided that, in D(e,; C) (e: any positive constant),
(1. 1) has the same order as in the whole plane, where D(e; C) is the

curved strip generated by circles with radii € and having its centres
on C.
Our theorems read as follows:

Theorem I. Let (1.1) with hm log n/A, <+ o be simply (neces-
sarily absolutely) convergent in the whole plane, and C be any given
analytic curve extending to o= — oo. Then, there exists a everywhere
absolutely convergent Dirichlet series 2 €., exp (—4,8) (e,==%x1),
such that tt has every curve C, (— °°<'r< + ) as its order-curve,
where C; is obtained from moving C in parallel by it (— oo <+ <+ ).

Theorem II. Under the same assumptions as above, there exists
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a everywhere absolutely convergent Dirichlet series 21 b, exp (—4,8)
having every curve C, (— oo <7<+ ) as its order-curve such that
(a) Ilﬁ“lf_;laé‘l’ lim |arg(b,) —arg(a.)| =0

or
(b)  arg(b.) =arg(a.), lim |buja| =1.
n=1,2,,
(2) Proof of Theorem I. Let a,,, o, be the simple and abso-
lute convergence-abscissa of (1.1) respectively. By the well-known

theorem (D. V. Widder®, p. 49), we have
(I o,,ghm log n/4,,

so that, from o,=— « and hm log n/z,.<+ w0, g,= — o immediate-
ly follows. Hence (1.1) is necessarxly absolutely convergent in the
whole plane. L

Let (1.1) be of order p. Then, by J. Ritt’s theorem® and lim
log n/i, <+ «, we have e
2.1) lim 1/2,log A,. log|a.|=—1/p.
Hence we can selggéwfrom {4} a sequence {4,} such that
' { (i) ‘ljm 1/2.: log ... log |a.|=—1/p,

(ii) ‘lln (Anze1—Aw) >0, ilim 2 A =0.
Now let us put
F(s) = 2 @, exp (—4.8)

n=l

= 2 a'n exp ( 27,3) + 2 awi eXp ( Rnls)

npé(nd)
= fo(s) + E(s).
Since F'(s) converges absolutely everywhere, R(s) is evidently abso-
lutely convergent. Taking account of J. Ritt’s theorem and (2. 2),
R(s) is also of order p. ’
Next put

R(s) = Zam exp (—Aus) =Jf1(s) + fals) + -+ +fu(s) + ---,
where f,(s) (n 1,2, ...) is a Dirichlet series having infinite number
of terms of R(s), Whlch is also everywhere absolutely convergent.
We define new Dirichlet series

F(s;{e.}) =fo(s) + €1 f1(s) + & fals) -+« + €ufuls) + - -+,
where &,=+1(n=1,2,...). Since F(s) converges absolutely every-
where, F'(s; {¢.}) is evidently everywhere absolutely convergent
and by (2.1), it is also of order p.

Putting
G(s) =F(s;{e.}) — F(s;{e.}) ({e.}E=A{e}),
we can prove that
@.3) {(i) G(s) is an integral function of order p,
"7 |(i)) G(s) has every curve C, (— o <<+ o) as its order-curve.

(2. 2)
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In fact, setting
G(s) = 2 (6—8&) ful(s) = ‘Z; brns €XD (— AmiS) s

V=1

we have
{ (1) mie{n},

(ii) |bm£‘| = 2 la’mil ’
so that, by (2. 2)

(i) lim 1/, log An. log |b.| =-1/p,
(2. 4) { 4> +o0

(ii) ggol_o (Amt+1— Ame) > 0, 41,112, s =
Hence, by (2. 4), J. Ritt’s theorem and an extension of G. Pélya’s
theorem®, (2. 8) holds.

Let F'(s; {e.}) have the subset {C..} of {C.} as its order-curves.
Corresponding to {C..}, we consider the set {+'}, which is evidently
closed. Let us denote by E({¢.}) the complementary set of {+},
which is obviously an open set. Then we can easily prove that
(2. 5) E({e.}) nE({e;}) =0 for {e.}=={e.}.

In fact, if there should exist one curve C,, such that

7'e E({e.}) ~n E({e.}) =0,

then C.,, would not be the order-curve of G(s). For, in D(¢; C,.)
(e: arbitrary positive constant), F'(s; {¢.}) and F(s; {¢,}) have the
order less than p, so that G(s)=F(s; {¢.})—F'(s; {¢,}) has also the
order less than p in this curved-strip, i.e. C.. is not the order-
curve of G(s), taking account of (2. 8) (i). On the other hand, by
(2. 8) (ii), G(s) has all curves as its order-curves, which contradicts
the existence of C..,. Thus, (2.5) is proved.

If E({e,})+0 for.all {e.}, by (2.5) the function-family {F(s;
{e.})} is at most of enumerable power, which contradicts the power
of continuum of {F'(s; {¢.})}. Hence, for at least one {¢.}, E({e.})=
0. In other words, F'(s; {e.}) has every curve C, (— o <7<+ =)
as its order-curve and it is evidently of the form

f}l €nd, eXp(—As8), E€.==%1,
which is to be pro;-ed.

(3) Proof of Theorem II. By the arguments as above, F(s)
is everywhere absolutely convergent. Let F(s) be of order p.
Let us put

F(s; 0, a)

= ‘}_'} a.; exp (af/i..). exp(—a4.s) + > a, exp (—4.s),
=l

nE {ni

where the sequence {4.} is determined by (2.2), and a, 8 (8: real)
are constants determined later. Then F(s; 6, «) is an integral func-
tion of order p, taking account of J. Ritt’s theorem and (2. 2).
Putting
G@E)=F(s;0,a)—F(s;6,,a) (6,F6,),
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G(s) is also an integral function of order p. For,
G(s) = 23 @ {€Xp (a6)/2.5) — 6XP (af/Aus)} - €XD (= Ai5)

= ‘2:4_: am’ 0(1/lnt)- exp ( '—JMS),
so that, by (2.2)

m I/JM 108' zm . lOg 'ani 0 (llzwt) I

4> +o00

= ‘ljglo 1/4.: log A.;. log |a,| + ‘lim 1/A.: 10g 4. log |0(1/2.0)| = — 1/p,

which shows that G(s) is of order p.

Let E(6, a) be the complementary set of {r'}, where F(s; 6, «)
has the subset {C..} of {C.} as its order-curves. Then E(6, a) is
evidently an open set. Now we can prove
8.1) E6,, a) ~ E(6:, a)=0 for 6, 6,.

In fact, if there should exist oene curve (., such that

'€ E(6,, a) ~ E(6,, a)=0,
then by the entirely similar discussion as above, C.. would not
be the order-curve of G(s). On the other hand, by (2.2) and an
extension of G. Pélya’s theorem®, G(s) has every curve C.
(— oo <r <+ o) as its order-curve, which leads us to a contradic-
tion. Thus (8. 1) is proved.

If £(6,a)=F0 holds for 007 (v: a fixed constant), by
(8.1), the function-family {F'(s; 8, )} is at most of enumerable
power, which contradicts the power of continuum of {F(s; ¥, a)}.
Hence, at least one ¢, E(#', «)=0. In other words, F(s; ¥, «)
has every curve C. (— o< r< 4+ «) as its order-curves. If a=
(=1 (=1), (a) ((b)) of Theorem II holds, q.e.d.
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