97. An Observation on the Brown-McCoy Radical

By F. Szász

Mathematical Institute of Academy of Science, Budapest (Comm. by K. KUNUGI, M.J.A., July 12, 1961)

We wish to characterize in this note the Brown-McCoy radical G(A) of an associative ring A, as a radical (1, 1, 1, 1)(A), (1, 1, 1, 0)(A), (1, 1, 0, 1)(A) and (1, 2, 1, 1)(A), respectively, where (k, l, m, n)(A) is a well-defined special F-radical of the ring A in the sense of Brown-McCoy [3] for arbitrary nonnegative integers k, l, m and n. The concept of a (k, l, m, n)-radicalring A can be illustrated by the following elementary remarks. If the elements of A form on the operation $a \circ b = a + b - ab$ $(a, b \in A)$ a Neumann-regular semigroup (for instance in the case of a Jacobson-radicalring A, when (A, 0) is a group), then A is a (k, 0, 1, 1)-radicalring and a (0, l, 1, 1)-radicalring at the same time for any integers $k, l \ge 0$. Furthermore any (k, l, m, n)-semisimple ring A with minimum condition on twosided principal ideals is, as an (A, A)-doublemodule, completely reducible in a weak meaning, which generalizes the classical Wedderburn-Artin structure theorem also. (For the details of radicals, see [1], [2], [3].)

In this note the knowing of the results of Brown-McCoy [3] will be assumed for the reader. We denote the sum of all twosided principal ideals $(a^{(m)} \circ x \circ a^{(n)} - k \cdot a^{(l)})$ by (k, l, m, n)(a), where a is a fixed element, X a varying element of A, $a \circ b = a + b - ab$, $a^{(1)} = 0$, $a^{(1)} = a$, $a^{(k+1)} = a^{(k)} \circ a$ and k, l, m, n are nonnegative integers. An element $a \in A$ is called (k, l, m, n)-regular, if $a \in (k, l, m, n)(a)$. We call an element $a \in A$ strictly (k, l, m, n)-regular, if any element b of the twosided principal ideal (a) generated by a is (k, l, m, n)-regular. The set (k, l, m, n)(A) of all strictly (k, l, m, n)-regular-elements of A is called the (k, l, m, n)-radical of A. This is evidently a special Fradical of A[3]. The rings with (k, l, m, n)-radical (0) are called (k, l, m, n)-semisimple. We call a subdirectly irreducible (k, l, m, n)semisimple ring A shortly: (k, l, m, n)-primitive. An element $a \neq 0$ with the condition (k, l, m, n)(a) = 0 is called here a (k, l, m, n)distinguished element of A. By [3] the (k, l, m, n)-radical of A is the intersection of such ideals $\mathfrak{T}_{r}(\gamma \in \Gamma)$ of A, that the factorrings A/\mathfrak{T}_r are (k, l, m, n)-primitive. A/(k, l, m, n)(A) is (k, l, m, n)-semisimple, and a subdirect sum of (k, l, m, n)-primitive rings. By [3] a subdirectly irreducible ring A is (k, l, m, n)-primitive if and only if the minimal ideal $\mathfrak{D} \neq 0$ of A contains a (k, l, m, n)-distinguished element $d \neq 0$ playing the role of unity element in the case of radical

(1, 1, 1, 1)(A) = G(A) of A.

Then holds the following

Theorem. An arbitrary (k, l, m, n)-primitive ring P has no proper twosided ideals, and we have $(1-d^{(m)})P(1-d^{(n)})=0$, $d=kd\cdot d^{(l)}$, $kd^{(l)}=d^{(m+n)}$ for a (k, l, m, n)-distinguished element $d(\neq 0)$ of P. Furthermore G(A)=(1, 1, 1, 1)(A)=(1, 1, 1, 0)(A)=(1, 1, 0, 1)(A)=(1, 2, 1, 1)(A) are valid for the Brown-McCoy radical G(A) of an arbitrary (associative) ring A.

Proof. If P is (k, l, m, n)-primitive, then there exists [3] a (k, l, m, n)-primitive. l, m, n)-distinguished element $d \neq 0$ in the minimal ideal $\mathfrak{D} \neq 0$ of P. We have from (k, l, m, n)(d) = 0 evidently $d^{(m)} \circ x \circ d^{(n)} = k \cdot d^{(l)}$ for any $x \in P$. In the special case X=0 follows $d^{(m+n)}=kd^{(l)}$ and thus in the case of arbitrary $x \in P$ is $X = d^{(m)} \cdot x + xd^{(n)} - d^{(m)}xd^{(n)} \in \mathbb{D}$ valid. Therefore one has $P = \mathfrak{D}$ for the (k, l, m, n)-primitive rings P, and thus P cannot have proper twosided ideals. Obviously follows also $(1-d^{(m)})$ $P(1-d^{(n)})=0, d=d \cdot d^{(m+n)}$ and $d=kd \cdot d^{(l)}$ respectively. Let A be now an arbitrary associative ring. Then (1, 1, 1, 1)(A) = G(A) will be proved by showing, that any (1, 1, 1, 1)-primitive ring P is a simple ring with unity element, and a similar fact holds for other special k, l, m, n mentioned in the above theorem. In the four cases k, l, m, nmentioned above, k=1, hence $d=d \cdot d^{(l)}$ and $d^{(l)}=d^{(m+n)}$. If l=m=n=1, then one has $d^2=d$ for the (k, l, m, n)-distinguished element $d \neq 0$ of the (k, l, m, n)-primitive ring P. By (1-d)P(1-d)=0 follows C=(1-d)P+P(1-d)P=0, since P is by $d^2=d\pm 0$ semi-simple in the sense of Jacobson, and the ideal C is nilpotent. Thus (1-d)P=0, $P=dP(d^2=d)$ and similarly P=Pd too. Therefore one has (1, 1, 1, 1)(A)=G(A). If k=l=m=1 and n=0, immediately follows

 $(1, 1, 1, 0)(a) = \sum_{x \in A} (a \circ x \circ a^{(0)} - a) = \sum_{x \in A} (X - ax) = (1-a)A + A(1-a)A$, and thus (1, 1, 1, 0)(A) = G(A) by the definition of the Brown-McCoy radical G(A) of A [3]. The case k = l = n = 1 and m = 0 is totally similar to the previous case. If k = m = n = 1 and l = 2, then one has $d = d \cdot d^{(2)}$ and thus $d - 2d^2 + d^3 = 0$. Then by $d = 2d^2 - d^3 \neq 0$ is surely $P^2 \neq 0$, i.e. P is semisimple in the sense of Jacobson by the want of proper ideals. By (1-d)P(1-d)=0 and $P^2 \neq 0$ follows C = (1-d)P+P(1-d)P = 0, since C is a nilpotent twosided ideal of P. This means (1-d)P = 0 and P = dP. From $(d-d^2)P = (1-d)dP = 0$ follows by P^2 $\neq 0$ evidently $d^2 = d$, for a Jacobson-semisimple ring we have no annullator $\neq 0$. Therefore d is a left unity element of P(=dP), and similarly one has P = Pd also, which proves the theorem.

Remarks. 1) Any (k, l, m, n)-semisimple ring with minimum condition on *twosided* principal ideals is the discrete direct sum of (k, l, m, n)-primitive rings (see for these rings the above theorem), and conversely.

414

2) If the elements of A form with the operation $a \circ b = a + b - ab$ a Neumann-regular semigroup, then A is a (k, 0, 1, 1)-radicalring and a (0, l, 1, 1)-radicalring too.

3) It can be proved A = (0, 0, 0, 0)(A) = (k, 0, 0, 1)(A) = (0, l, 0, 1)(A)=(k, 0, 1, 0)(A) = (0, l, 1, 0)(A) = (2, 1, 1, 0)(A) = (2, 1, 0, 1)(A) = (2, 1, 1, 1)(A).

For instance, if P is a (2, 1, 1, 1)-primitive ring, then holds $d^{(2)}=2d^{(1)}$ and (1-d)P(1-d)=0, consequently $2d-d^2=2d$, $d^2=0$ and $0 \neq d=d$ $-2d^2+d^3=(1-d)d(1-d)\in(1-d)P(1-d)=0$, which is a contradiction. Therefore P=0 and (2, 1, 1, 1)(A)=A.

4) Any (k, 0, 1, 1)-primitive ring P and any (0, l, 1, 1)-primitive ring P are simple rings with unity element and with the condition $2P = P \neq 0$.

5) Any (3, 1, 1, 1)-primitive ring, any (3, 1, 1, 0)-primitive ring and any (3, 1, 0, 1)-primitive ring P are simple rings with unity element and with the condition 2P=0. Therefore for example a (3, 1, 1, 1)-primitive ring $P \neq 0$ cannot be for instance a (0, l, 1, 1)-primitive ring.

6) We have seen (1, 2, 1, 1)(A) = G(A). Then holds $(1, 2, 1, 1)(a) = ((1-a)A(1-a)) = (1-a)A(1-a) + A(1-a)A(1-a) + (1-a)A(1-a)A + A(1-a)A(1-a)A \supseteq W(a) = A(1-a)A(1-a)A$. The following W-regularity: $b \in W(b)$ determines a special F-radical W(A) of A. If P is a W-primitive ring *i.e.* a W-semisimple and subdirectly irreducible ring, and if $P^3 \neq 0$, then P is a simple ring with unity element. If P is a W-primitive ring and if $P^2=0$, then the additive group P^+ is isomorphic to a group $C(p^k)$, where $1 \leq k \leq \infty$. If finally $P^2 \neq 0$ but $P^3=0$, and P is a W-primitive ring, then we have $P\mathfrak{D}=\mathfrak{D}P=0$ for the minimal ideal \mathfrak{D} of P and $(P^2)^+ \cong C(p^k)$ holds $(1 \leq k \leq \infty)$. For example $A = \{a_1, a_2, \dots; b_1, b_2, \dots\}$ with $a_i^2 - b_i = pa_1 = b_i - pb_{i+1} = a_ia_j = a_i^3 = 0$ is a W-primitive ring with $A^3=0$ and $A^2 \neq 0$, $(A^2)^+ \cong C(p^\infty)(i \neq j)$.

7) Let A be an associative ring, M a right A-module and \mathfrak{M} an arbitrary cardinal number. An A-submodule K of M is called \mathfrak{M} -homoperfect, if the following conditions are satisfied:

I) MA+K=M;

II) M/K is a completely reducible A-module of dimension $<\mathfrak{M}$;

III) M/K has no proper A-submodule, which is invariant for all A-endomorphism of M/K;

IV) if φ is an A-homomorphism of M/L onto M/K for an A-submodule L with the conditions I), II) and III), then φ is an isomorphism.

Let $\Re_m(M)$ be now itself M, if M has no proper \mathfrak{M} -homoperfect submodules. If there exist in M proper \mathfrak{M} -homoperfect submodules $K_r(\gamma \in \Gamma)$, then we define $\Re_m(M) = \bigcap K_r$. In the case of $1 \in A$, a unitary

No. 8]

A-module M and $\mathfrak{M}=2$; $\mathfrak{R}_m(M)$ is the Bourbaki-radical of M [2], and in the case $\mathfrak{M}=2$ and arbitrary A we obtain the Kertész-radical of M [5]. We have proved solving in [6] a problem of Dr. A. Kertész [5] that the Jacobson-radical $\mathfrak{F}(A)$ of A must not coincide with the radical $\mathfrak{R}_2(A)$ of the right A-module A, if the power |A|of A is no quadratifree finite cardinal number. We have generally only $\mathfrak{R}_2(A) \subseteq \mathfrak{F}(A)$. If in the ring A with left unity element holds the minimum condition on principal right ideals [7] and $\mathfrak{M}=\mathfrak{Z}_0$, then one has evidently $\mathfrak{R}_{\mathfrak{K}_0}(A) \subseteq G(A)$ for the above radical $\mathfrak{R}_m(A)$ of the right A-module A and the Brown-McCoy radical G(A) of A.*' Now we arise the following

Problem. What is a necessary and sufficient condition concerning A for the validity of $\Re_{\mathbf{x}_0}(A) = G(A)$? (Solve a similar problem of A. Kertész on $\Re_2(A)$ and $\Im(A)$ too!)

References

- W. A. Andrunakiewitsh: Semiradical rings (in Russian), Isvestiya Acad. Nauk. S.S.S.R. Ser. Math., 12, 129–178 (1948).
- [2] N. Bourbaki: Éléments de Mathématiques, Algebre, Ch. VIII. Modules et Anneaux Semisimples, Hermann, Paris (1958).
- [3] B. Brown and N. H. McCoy: Radicals and subdirect sums, Amer. Jour. Math., 69, 46-58 (1947).
- [4] N. Jacobson: Structure of Rings, Providence (1956).
- [5] A. Kertész: Investigations in the theory of operator-modules, III, Magyar Tud. Akad. III. Oszt. Közl., (in Hungarian), 9, 105-120 (1959).
- [6] F. Szász: On the Kertész-radical of the operator-modules, Magyar Tud. Akad. III. Oszt. Közl., (in Hungarian), 10, 35-38 (1960).
- [7] F. Szász: Über Ringe mit Minimalbedingung für Hauptrechtsideale, I, Publ. Math., Debrecen, 7, 54-64 (1960); II, Acta Math. Acad. Sci., Hung., 12 (in press).

*) It may be remarked that the theory of *F*-radicales can be formulated for *A*-modules too, where *F* is a well-defined mapping of any *A*-module *M* onto a set of submodules F(m) of M ($m \in M$, $F(m) \subseteq M$) with the condition $F(m)\varphi = F(m\varphi)$ for any *A*-homomorphism φ of *M*. Then $m \in M$ is *F*-regular in the case $m \in F(m)$. Then the *F*-radical of *M* is the set $[m; m \in M, n \in F(n), n \in \{m\}]$.