97. An Observation on the Brown-McCoy Radical

By F. Szász
Mathematical Institute of Academy of Science, Budapest
(Comm. by K. Kunugi, m.J.A., July 12, 1961)

We wish to characterize in this note the Brown-McCoy radical $G(A)$ of an associative ring A, as a radical $(1,1,1,1)(A),(1,1,1,0)(A)$, $(1,1,0,1)(A)$ and $(1,2,1,1)(A)$, respectively, where $(k, l, m, n)(A)$ is a well-defined special F-radical of the ring A in the sense of BrownMcCoy [3] for arbitrary nonnegative integers k, l, m and n. The concept of a (k, l, m, n)-radicalring A can be illustrated by the following elementary remarks. If the elements of A form on the operation $a \circ b=a+b-a b(a, b \in A)$ a Neumann-regular semigroup (for instance in the case of a Jacobson-radicalring A, when $(A, 0)$ is a group), then A is a ($k, 0,1,1$)-radicalring and a ($0, l, 1,1$)-radicalring at the same time for any integers $k, l \geqq 0$. Furthermore any (k, l, m, n)-semisimple ring A with minimum condition on twosided principal ideals is, as an (A, A)-doublemodule, completely reducible in a weak meaning, which generalizes the classical Wedderburn-Artin structure theorem also. (For the details of radicals, see [1], [2], [3].)

In this note the knowing of the results of Brown-McCoy [3] will be assumed for the reader. We denote the sum of all twosided principal ideals $\left(a^{(m)} \circ x \circ a^{(n)}-k \cdot a^{(l)}\right)$ by ($\left.k, l, m, n\right)(a)$, where a is a fixed element, X a varying element of $A, a \circ b=a+b-a b, a^{(0)}=0, a^{(1)}=a$, $a^{(k+1)}=a^{(k)}{ }_{\circ} a$ and k, l, m, n are nonnegative integers. An element $a \in A$ is called (k, l, m, n)-regular, if $a \in(k, l, m, n)(a)$. We call an element $a \in A$ strictly (k, l, m, n)-regular, if any element b of the twosided principal ideal (a) generated by a is (k, l, m, n)-regular. The set $(k, l, m, n)(A)$ of all strictly (k, l, m, n)-regular-elements of A is called the (k, l, m, n)-radical of A. This is evidently a special F radical of $A[3]$. The rings with (k, l, m, n)-radical (0) are called (k, l, m, n)-semisimple. We call a subdirectly irreducible (k, l, m, n)semisimple ring A shortly: (k, l, m, n)-primitive. An element $a \neq 0$ with the condition $(k, l, m, n)(a)=0$ is called here a (k, l, m, n) distinguished element of A. By [3] the (k, l, m, n)-radical of A is the intersection of such ideals $\mathfrak{I}_{\gamma}(\gamma \in \Gamma)$ of A, that the factorrings A / \mathfrak{I}_{r} are (k, l, m, n)-primitive. $A /(k, l, m, n)(A)$ is (k, l, m, n)-semisimple, and a subdirect sum of (k, l, m, n)-primitive rings. By [3] a subdirectly irreducible ring A is (k, l, m, n)-primitive if and only if the minimal ideal $\mathfrak{D} \neq 0$ of A contains a (k, l, m, n)-distinguished element $d \neq 0$ playing the role of unity element in the case of radical
$(1,1,1,1)(A)=G(A)$ of A.
Then holds the following
Theorem. An arbitrary (k, l, m, n)-primitive ring P has no proper twosided ideals, and we have $\left(1-d^{(m)}\right) P\left(1-d^{(n)}\right)=0, d=k d \cdot d^{(c)}$, $k d^{(l)}=d^{(m+n)}$ for a (k, l, m, n)-distinguished element $d(\neq 0)$ of P. Furthermore $G(A)=(1,1,1,1)(A)=(1,1,1,0)(A)=(1,1,0,1)(A)=(1,2,1,1)$ (A) are valid for the Brown-McCoy radical $G(A)$ of an arbitrary (associative) ring A.

Proof. If P is (k, l, m, n)-primitive, then there exists [3] a (k, l, m, n)-distinguished element $d \neq 0$ in the minimal ideal $\mathfrak{D} \neq 0$ of P. We have from $(k, l, m, n)(d)=0$ evidently $d^{(m)} \circ x \circ d^{(n)}=k \cdot d^{(l)}$ for any $x \in P$. In the special case $X=0$ follows $d^{(m+n)}=k d^{(l)}$ and thus in the case of arbitrary $x \in P$ is $X=d^{(m)} \cdot x+x d^{(n)}-d^{(m)} x d^{(n)} \in \mathfrak{D}$ valid. Therefore one has $P=\mathfrak{D}$ for the (k, l, m, n)-primitive rings P, and thus P cannot have proper twosided ideals. Obviously follows also ($1-d^{(m)}$) $P\left(1-d^{(n)}\right)=0, d=d \cdot d^{(n+n)}$ and $d=k d \cdot d^{(l)}$ respectively. Let A be now an arbitrary associative ring. Then $(1,1,1,1)(A)=G(A)$ will be proved by showing, that any ($1,1,1,1$)-primitive ring P is a simple ring with unity element, and a similar fact holds for other special k, l, m, n mentioned in the above theorem. In the four cases k, l, m, n mentioned above, $k=1$, hence $d=d \cdot d^{(l)}$ and $d^{(l)}=d^{(m+n)}$. If $l=m=n$ $=1$, then one has $d^{2}=d$ for the (k, l, m, n)-distinguished element $d \neq 0$ of the (k, l, m, n)-primitive ring P. By $(1-d) P(1-d)=0$ follows $C=(1-d) P+P(1-d) P=0$, since P is by $d^{2}=d \neq 0$ semi-simple in the sense of Jacobson, and the ideal C is nilpotent. Thus $(1-d) P=0$, $P=d P\left(d^{2}=d\right)$ and similarly $P=P d$ too. Therefore one has $(1,1,1,1)$ $(A)=G(A)$. If $k=l=m=1$ and $n=0$, immediately follows

$$
(1,1,1,0)(a)=\sum_{x \in A}\left(a \circ x \circ a^{(0)}-a\right)=\sum_{x \in A}(X-a x)=(1-a) A+A(1-a) A,
$$

and thus $(1,1,1,0)(A)=G(A)$ by the definition of the Brown-McCoy radical $G(A)$ of A [3]. The case $k=l=n=1$ and $m=0$ is totally similar to the previous case. If $k=m=n=1$ and $l=2$, then one has $d=d \cdot d^{(2)}$ and thus $d-2 d^{2}+d^{3}=0$. Then by $d=2 d^{2}-d^{3} \neq 0$ is surely $P^{2} \neq 0$, i.e. P is semisimple in the sense of Jacobson by the want of proper ideals. By $(1-d) P(1-d)=0$ and $P^{2} \neq 0$ follows $C=(1-d) P$ $+P(1-d) P=0$, since C is a nilpotent twosided ideal of P. This means $(1-d) P=0$ and $P=d P$. From $\left(d-d^{2}\right) P=(1-d) d P=0$ follows by P^{2} $\neq 0$ evidently $d^{2}=d$, for a Jacobson-semisimple ring we have no annullator $\neq 0$. Therefore d is a left unity element of $P(=d P)$, and similarly one has $P=P d$ also, which proves the theorem.

Remarks. 1) Any (k, l, m, n)-semisimple ring with minimum condition on twosided principal ideals is the discrete direct sum of (k, l, m, n)-primitive rings (see for these rings the above theorem), and conversely.
2) If the elements of A form with the operation $a \circ b=a+b-a b$ a Neumann-regular semigroup, then A is a ($k, 0,1,1$)-radicalring and a ($0, l, 1,1$)-radicalring too.
3) It can be proved $A=(0,0,0,0)(A)=(k, 0,0,1)(A)=(0, l, 0,1)(A)$ $=(k, 0,1,0)(A)=(0, l, 1,0)(A)=(2,1,1,0)(A)=(2,1,0,1)(A)=(2,1,1,1)$ (A).

For instance, if P is a (2, 1, 1, 1)-primitive ring, then holds $d^{(2)}=2 d^{(1)}$ and $(1-d) P(1-d)=0$, consequently $2 d-d^{2}=2 d, d^{2}=0$ and $0 \neq d=d$ $-2 d^{2}+d^{3}=(1-d) d(1-d) \in(1-d) P(1-d)=0$, which is a contradiction. Therefore $P=0$ and $(2,1,1,1)(A)=A$.
4) Any ($k, 0,1,1$)-primitive ring P and any ($0, l, 1,1$)-primitive ring P are simple rings with unity element and with the condition $2 P=P \neq 0$.
5) Any (3,1,1,1)-primitive ring, any (3, 1, 1, 0)-primitive ring and any ($3,1,0,1$)-primitive ring P are simple rings with unity element and with the condition $2 P=0$. Therefore for example a (3,1 , 1,1)-primitive ring $P \neq 0$ cannot be for instance a ($0, l, 1,1$)-primitive ring.
6) We have seen $(1,2,1,1)(A)=G(A)$. Then holds $(1,2,1,1)(a)$ $=((1-a) A(1-a))=(1-a) A(1-a)+A(1-a) A(1-a)+(1-a) A(1-a) A$ $+A(1-a) A(1-a) A \supseteq W(a)=A(1-a) A(1-a) A$. The following W-regularity: $b \in W(b)$ determines a special F-radical $W(A)$ of A. If P is a W-primitive ring i.e. a W-semisimple and subdirectly irreducible ring, and if $P^{3} \neq 0$, then P is a simple ring with unity element. If P is a W-primitive ring and if $P^{2}=0$, then the additive group P^{+} is isomorphic to a group $C\left(p^{k}\right)$, where $1 \leqq k \leqq \infty$. If finally $P^{2} \neq 0$ but $P^{3}=0$, and P is a W-primitive ring, then we have $P \mathfrak{D}=\mathfrak{D} P=0$ for the minimal ideal \mathfrak{D} of P and $\left(P^{2}\right)^{+} \cong C\left(p^{k}\right)$ holds $(1 \leqq k \leqq \infty)$. For example $A=\left\{a_{1}, a_{2}, \cdots ; b_{1}, b_{2}, \cdots\right\}$ with $a_{i}^{2}-b_{i}=p a_{1}=b_{i}-p b_{i+1}=a_{i} a_{j}=a_{i}^{3}$ $=0$ is a W-primitive ring with $A^{3}=0$ and $A^{2} \neq 0,\left(A^{2}\right)^{+} \cong C\left(p^{\infty}\right)(i \neq j)$.
7) Let A be an associative ring, M a right A-module and \mathfrak{M} an arbitrary cardinal number. An A-submodule K of M is called $\mathfrak{M -}$ homoperfect, if the following conditions are satisfied:
I) $M A+K=M$;
II) M / K is a completely reducible A-module of dimension $<\mathfrak{M}$;
III) M / K has no proper A-submodule, which is invariant for all A-endomorphism of M / K;
IV) if φ is an A-homomorphism of M / L onto M / K for an A submodule L with the conditions I), II) and III), then φ is an isomorphism.

Let $\Re_{m}(M)$ be now itself M, if M has no proper \mathfrak{M}-homoperfect submodules. If there exist in M proper \mathfrak{M}-homoperfect submodules $K_{r}(\gamma \in \Gamma)$, then we define $\Re_{m}(M)=\bigcap_{r} K_{r}$. In the case of $1 \in A$, a unitary
A-module M and $\mathfrak{M}=2$; $\Re_{m}(M)$ is the Bourbaki-radical of M [2], and in the case $\mathfrak{M}=2$ and arbitrary A we obtain the Kertész-radical of M [5]. We have proved solving in [6] a problem of Dr. A. Kertész [5] that the Jacobson-radical $\mathfrak{F}(A)$ of A must not coincide with the radical $\Re_{2}(A)$ of the right A-module A, if the power $|A|$ of A is no quadratfree finite cardinal number. We have generally only $\Re_{2}(A) \subseteq \mathscr{F}(A)$. If in the ring A with left unity element holds the minimum condition on principal right ideals [7] and $\mathfrak{M}=\mathscr{S E}_{0}$, then one has evidently $\Re_{r_{0}}(A) \subseteq G(A)$ for the above radical $\Re_{m}(A)$ of the right A-module A and the Brown-McCoy radical $G(A)$ of $A .^{*)}$ Now we arise the following

Problem. What is a necessary and sufficient condition concerning A for the validity of $\Re_{x_{0}}(A)=G(A)$? (Solve a similar problem of A. Kertész on $\Re_{2}(A)$ and $\mathfrak{F}(A)$ too!)

References

[1] W. A. Andrunakiewitsh: Semiradical rings (in Russian), Isvestiya Acad. Nauk. S.S.S.R. Ser. Math., 12, 129-178 (1948).
[2] N. Bourbaki: Éléments de Mathématiques, Algebre, Ch. VIII. Modules et Anneaux Semisimples, Hermann, Paris (1958).
[3] B. Brown and N. H. McCoy: Radicals and subdirect sums, Amer. Jour. Math., 69, 46-58 (1947).
[4] N. Jacobson: Structure of Rings, Providence (1956).
[5] A. Kertész: Investigations in the theory of operator-modules, III, Magyar Tud. Akad. III. Oszt. Közl., (in Hungarian), 9, 105-120 (1959).
[6] F. Szász: On the Kertész-radical of the operator-modules, Magyar Tud. Akad. III. Oszt. Közl., (in Hungarian), 10, 35-38 (1960).
[7] F. Szász: Über Ringe mit Minimalbedingung für Hauptrechtsideale, I, Publ. Math., Debrecen, 7, 54-64 (1960); II, Acta Math. Acad. Sci., Hung., 12 (in press).

[^0]
[^0]: *) It may be remarked that the theory of F-radicales can be formulated for A modules too, where F is a well-defined mapping of any A-module M onto a set of submodules $F(m)$ of $M(m \in M, F(m) \subseteq M)$ with the condition $F(m) \varphi=F(m \varphi)$ for any A homomorphism φ of M. Then $m \in M$ is F-regular in the case $m \in F(m)$. Then the F radical of M is the set [$m ; m \in M, n \in F(n), n \in\{m\}$].

