140. The Structure of Quasi-Minimal Sets

By Shigeo Kono

Department of Mathematics, Josai University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

1. Introduction. The concept of the quasi-minimal sets, introduced by H. F. Hilmy [1], plays rather important roles for the investigation of the structure of the center of the compact dynamical systems.

In this paper, we study mainly the three problems, i.e., (a) how a quasi-minimal set contains minimal sets, (b) the qualities of these minimal sets, (c) the behaviors of the orbits near these minimal sets. Main results obtained are as follows:

Theorems 9 and 10 for (a),

Theorems 8, 12 and 13 for (b), and Theorem 14 for (c).

2. Definitions and notations.

- X: a compact metric space.
- R: a real line.

 $\pi: X \times R \rightarrow X$ is a mapping which satisfies

- 1) $\pi \in C[X \times R]$,
- 2) $\pi(x, 0) = x$, and
- 3) $\pi(\pi(x,s),t) = \pi(x,s+t).$

The triple (X, R, π) is a compact dynamical system whose phase space, phase group, and phase projection are X, R, and π , respectively.

 $\gamma(x) = \{\pi(x, t); t \in R\}$ is the orbit passing through $x \in X$.

 $\gamma^+(x) = \{\pi(x, t); t \ge 0\}$ and $\gamma^-(x) = \{\pi(x, t); t \le 0\}$ are respectively positive semi-orbit and negative semi-orbit from $x \in X$.

 $\Lambda^+(x) = \bigcap_{0 \le t} \overline{\gamma^+(\pi(x, t))}$ and $\Lambda^-(x) = \bigcap_{0 \ge t} \overline{\gamma^-(\pi(x, t))}$ are the positive and negative limit set of $\gamma(x)$, respectively.

 $\gamma(x)$ is positively (negatively) Poisson stable if and only if $\Lambda^+(x) \cap \gamma(x) \neq \phi$ $(\Lambda^-(x) \cap \gamma(x) \neq \phi)$.

 $\gamma(x)$ is Poisson stable if and only if it is both positively and negatively Poisson stable.

 $\gamma(x)$ is positively (negatively) asymptotic if and only if $\gamma(x) \cap \Lambda^+(x) = \phi$ and $\Lambda^+(x) \neq \phi$ ($\gamma(x) \cap \Lambda^-(x) = \phi$ and $\Lambda^-(x) \neq \phi$).

A subset S of X is invariant if and only if $\gamma(x) \subset S$ holds for any $x \in S$.

A closed and invariant set F is minimal if and only if it contains no proper subsets which are closed and invariant.

[Vol. 46,

3. The structure of S_{π} , S_{μ} and S_{σ} . Lemma 1. $\gamma(x)$ is Poisson stable if and only if $\Lambda^{+}(x) = \Lambda^{-}(x) = \overline{\gamma(x)}$

holds.

The proof of this lemma is easy.

Definition 2. We call a set S quasi-minimal if there exists a point x of S such that $\gamma(x)$ is Poisson stable and is everywhere dense in S, i.e., $S = \overline{\gamma(x)}$.

Definition 3 [2]. Let S be a quasi-minimal set.

- 1) A point x of S is called π -point if $\overline{\gamma^+(x)} = \overline{\gamma^-(x)} = S$.
- 2) A point x of S is called μ -point if (a) $\overline{\gamma^+(x)} = S$ and $\overline{\gamma^-(x)} \subseteq S$ or (b)

 $\overline{\gamma^{+}(x)} \subseteq S \text{ and } \overline{\gamma^{-}(x)} = S \text{ holds.}$

3) A point x of S is called σ -point if $\gamma^+(x) \subseteq S$ and $\gamma^-(x) \subseteq S$.

Definition 4. Let S be a quasi-minimal set. We define S_{π} , S_{μ} and S_{σ} as follows:

 $S_{\pi} = \{x ; x \text{ is a } \pi \text{-point of } S\},\$ $S_{\mu} = \{x ; x \text{ is a } \mu \text{-point of } S\},\$ $S_{\sigma} = \{x ; x \text{ is a } \sigma \text{-point of } S\}.\$ It is known that S_{π}, S_{μ} and S_{σ} are all invariant [2]. The following Proposition 4 is found in T. Saito's paper [3]. Proposition 4. Let S be a quasi-minimal set.

1) If $x \in S_{\pi}$, then $\gamma(x)$ is Poisson stable.

- 2) if $x \in S_{\mu}$, then $\gamma(x)$ is
 - a) positively Poisson stable and negatively asymptotic, or
 - b) negatively Poisson stable and positively asymptotic.
- Here we consider the problem whether the inverse of proposition 4–1) holds or not. The answer to the problem is as follows:

Proposition 5. Let S be a quasi-minimal set.

$$x \in S_x \iff \begin{cases} 1 \\ 2 \end{pmatrix} \quad \frac{\gamma(x) \text{ is Poisson stable.}}{\gamma(x) = S.}$$

Proof (\Rightarrow). We know that $\overline{\gamma(x)} = S$, because $\overline{\gamma^+(x)} = \overline{\gamma^-(x)} = S$. This fact and Proposition 4-1) completes the proof of (\Rightarrow). (\Leftarrow). We know from the assumption 1) and Lemma 1 that

$$\overline{\gamma(x)} = \Lambda^+(x) = \Lambda^-(x).$$

On the other hand

$$\Lambda^+(x) \subset \overline{\gamma^+(x)} \subset S$$

and

$$\Lambda^-(x) \subset \overline{\gamma^-(x)} \subset S$$

holds. These facts and the assumption 2) imply

$$S = \overline{\gamma^+(x)} = \overline{\gamma^-(x)}.$$

Thus $x \in S_{\pi}$.

Q.E.D.

Next we give the necessary and sufficient conditions from a standpoint of limit sets for a point of a quasi-minimal set to be π -, or μ -, or σ -points:

Proposition 6.

1) $x \in S_{\pi} \iff \Lambda^{+}(x) = \Lambda^{-}(x) = S.$

- 2) $x \in S_{\mu} \iff 1$ $\Lambda^+(x) = S$ and $\Lambda^-(x) \subseteq S$, or 2) $\Lambda^+(x) \subseteq S$ and $\Lambda^-(x) = S$.
- 3) $x \in S_{\sigma} \iff \Lambda^+(x) \subseteq S \text{ and } \Lambda^-(x) \subseteq S.$

Proof. 1) can be easily proved using Lemma 1 and Proposition 5.

2) Let x be a point of S_{μ} . Then, a) $\overline{\gamma^+(x)} = S$ and $\overline{\gamma^-(x)} \subseteq S$, or b) $\overline{\gamma^+(x)} \subseteq S$ and $\overline{\gamma^-(x)} = S$. We shall prove only the case a). The case b) can be proved similarly. In the case a), $\gamma(x)$ is positively Poisson stable and negatively asymptotic, so that

 $\phi \neq \Lambda^{-}(x) \subseteq \Lambda^{+}(x) = \overline{\gamma(x)}.$

The closedness and invariantness of S imply that

$$S = \overline{\gamma^+(x)} \subset \overline{\gamma(x)} \subset S,$$

which means that $\overline{\gamma(x)} = S$. Thus we know that

 $\Lambda^+(x) = S$ and $\Lambda^-(x) \subseteq S$. (1) Conversely, let us assume that there exists a point x of S which satis-

so that

fies (1). Then

$$\overline{\gamma^{+}(x)} = S. \tag{2}$$

But $\overline{\gamma^{-}(x)} \subseteq S$, for if $\overline{\gamma^{-}(x)} = S$, then $x \in S_{\pi}$, so that $\Lambda^{-}(x) = S$ by Proposition 6–1), which contradicts the assumption (1). Thus $x \in S_{\mu}$.

 $S = \Lambda^+(x) \subset \overline{\gamma^+(x)} \subset S$,

3) The fact that 1), 2) and 3) are mutually exclusive proves 3).

Q.E.D.

Proposition 4 tells us the nature of the orbits in S_{π} and S_{μ} . Now we study structure of S_{σ} .

Proposition 7. $x \in S_{\sigma} \Rightarrow \overline{\gamma(x)} \subset S_{\sigma}$.

Proof. As S_{σ} is invariant [2], $\gamma(x) \subset S_{\sigma}$ for all $x \in S_{\sigma}$. Let x be a point of S_{σ} .

Then $(\forall y \in \Lambda^+(x))$

$$\begin{cases} \Lambda^+(y) \subset \overline{\gamma(y)} \subset \Lambda^+(x) \subseteq S & \text{and} \\ \Lambda^-(y) \subset \overline{\gamma(y)} \subset \Lambda^+(x) \subseteq S. \end{cases}$$

These facts imply that $y \in S_{\sigma}$. Thus $\Lambda^+(x) \subset S_{\sigma}$. We can prove similarly that $\Lambda^-(x) \subset S_{\sigma}$. Therefore

$$\overline{\gamma(x)} = \gamma(x) \cup \Lambda^+(x) \cup \Lambda^-(x) \subset S_{\sigma}.$$

Q.E.D.

Theorem 8. The open kernel of S_{σ} is empty.

[Vol. 46,

Proof. If $S_{\sigma} = \phi$, Theorem 8 is trivial. Let us assume that $S_{\sigma} \neq \phi$. As S_{π} is invariant [2],

$$\gamma(x) \subset S_{\pi} \subset S \tag{1}$$

for any $x \in S_{\pi}$. On the other hand, if $x \in S_{\pi}$, then by Proposition 5 $\overline{\gamma(x)} = S.$ (2)

We know by (1) and (2)

$$\overline{S_{\pi}}=S,$$

that is, S_{π} is everywhere dense in S. Therefore, for any point x of S_{σ} and for any neighborhood U(x) of this x, $U(x) \cap S_{\pi} \neq \phi$. Thus no points of S_{σ} are interior points, so that the open kernel of S_{σ} is empty. Q.E.D.

A quasi-minimal set S is compact and invariant, so S contains at least one minimal set [2]. But it is an important problem that in what way S contains minimal sets. We give the answer to this problem as follows.

Theorem 9. A quasi-minimal set S is minimal if and only if $S = S_{\pi}$.

Proof. If S is minimal, then $\gamma(x)$ is Poisson stable and $\overline{\gamma(x)}=S$ for any $x \in S$. This means that if $x \in S$, then $x \in S_x$. Thus $S \subseteq S_x$. But, of course $S_x \subseteq S$. Therefore $S = S_x$. Conversely, let us assume that $S = S_x$. If S is not minimal, then S contains a minimal set M. $M \subseteq S_x$ implies that $\overline{\gamma(x)} = S$ for all $x \in M$ by Proposition 5. But $\overline{\gamma(x)} = M$ for all $x \in M$, because M is closed and invariant. Further $M \subseteq S$. Thus we arrive at a contradiction. Therefore S is minimal. Q.E.D.

Corollary 9.1. A quasi-minimal set S is not minimal if and only if $S_{\mu} \cup S_{\sigma} \neq \phi$.

Theorem 10. If a quasi-minimal set S is not minimal, then S_{σ} contains all minimal sets contained in S.

Proof. Let M be a minimal set contained in S. For any $y \in M$, $\overline{\gamma(y)} = M \subseteq S$. This shows that $M \cap S_{\pi} = \phi$ (Proposition 5). Thus $M \subset S_{\mu} \cup S_{\sigma}$. Now we assume that $M \cap S_{\mu} \neq \phi$. For any point $x \in M \cap S_{\mu}$ one of the following two cases holds:

a) $\overline{\gamma^+(x)} = S$ and $\overline{\gamma^-(x)} \subseteq S$,

b) $\overline{\gamma^+(x)} \subseteq S$ and $\overline{\gamma^-(x)} = S$.

The case a), however, never occurs because it contradicts the fact that $\overline{\gamma^+(x)} \subset \overline{\gamma(x)} \subset M \subseteq S$. Also the case b) never occurs because of the similar reason as in the case a). Thus we know $M \cap S_{\mu} = \phi$, which implies that $M \subset S_{\sigma}$. Q.E.D.

Corollary 10.1. A quasi-minimal set S is not minimal if and only if $S_a \neq \phi$.

If a quasi-minimal set S is not minimal, then S_{σ} contains all minimal sets contained in S. Here we study the behaviors of orbits near

602

the minimal sets.

For this purpose, we first give some definitions and notations.

U is an arbitrary neighborhood of a minimal set of the dynamical system (X, R, π) . We classify $\overline{U} \setminus F$ as follows:

$$egin{aligned} &N_{ar{v}}^+ = \{x \ ; \ x \in ar{U} ar{V} F, \ C^+(x) \subset ar{U}\}, \ &N_{ar{v}}^- = \{x \ ; \ x \in ar{U} ar{V} F, \ C^-(x) \subset ar{U}\}, \ &G_U^- = \{x \ ; \ x \in ar{U} ar{V} F, \ C^+(x)
ot \ ar{U}, \ C^-(x)
ot \ ar{U}\}, \ &N_U^- = N_U^+ \cap N_{ar{v}}. \end{aligned}$$

Definition 10. We call a minimal set F isolated, if there exists a neighborhood of F which contains no minimal sets other than F.

Definition 11 [4]. An isolated minimal set F is called a saddle minimal set, if there exists a neighborhood U of F such that $\overline{G}_U \cap F \neq \phi$.

Theorem 12. Let S be a quasi-minimal set which is not minimal.

1) All isolated minimal sets contained in S are saddle minimal sets.

2) If S contains a minimal set which is not isolated, then S contains infinitely many minimal sets.

3) If S contains a finite number of minimal sets, then these minimal sets are all saddle minimal sets.

Proof. 1) S is compact, invariant, and not minimal, so there exists a compact minimal set which is a proper subset of S. But it is known that if a proper subset F of S is an isolated minimal subset, then F is a saddle minimal set [4].

2) is directly proved by Definition 10.

3) is proved by Theorem 12-1) and the fact that all minimal sets contained in S are isolated in this case. Q.E.D.

Theorem 13. If a quasi-minimal set S is not minimal, then all the minimal sets contained in S are nowhere dense.

Proof. The open kernels of minimal sets contained in S are subsets of S_{σ} (Theorem 10), so that these open kernels are all empty (Theorem 8). This result completes the proof because minimal sets are closed. Q.E.D.

The behaviors of orbits in S_{π} and S_{μ} are known (Proposition 4). But it remains an open problem to determine the behaviors of orbits in S_{σ} , as far as I know. The following Theorem 14 is a result of an attempt to solve this problem.

Let F be an isolated minimal set contained in S_{σ} . There exists an open neighborhood U of F, which contains no minimal sets other than F.

 $V=S_{\sigma}\cap U$ is a relative neighborhood of F in S_{σ} . Let \tilde{V} be the relative closure of V in S_{σ} . Then

$$\begin{split} \tilde{V} \setminus F = (S_{\sigma} \cap \bar{U}) \setminus F \\ = (S_{\sigma} \cap N_{\overline{U}}^{+}) \cup (S_{\sigma} \cap N_{\overline{U}}^{-}) \cup (S_{\sigma} \cap G_{U}), \end{split}$$

No. 6]

because $\overline{U} \setminus F = N_{\overline{U}}^+ \cup N_{\overline{U}}^- \cup G_U$. Here we take $n_{\overline{V}}^+$, $n_{\overline{V}}^-$, $n_{\overline{V}}$, $g_{\overline{V}}$ as follows:

$$n_{\overline{v}}^{+} = S_{\sigma} \cap N_{\overline{v}}^{+},$$

$$n_{\overline{v}}^{-} = S_{\sigma} \cap N_{\overline{v}}^{-},$$

$$n_{\overline{v}} = n_{\overline{v}}^{+} \cap n_{\overline{v}}^{-},$$

$$g_{\overline{v}} = S_{\sigma} \cap G_{\overline{v}}.$$

Then $\tilde{V} \setminus F = n_v^+ \cup n_v^- \cup g_v$.

The following facts are valid by the compactness of $ar{U}$ [4]:

1) if $x \in N_U^+ \setminus N_U$, then $\gamma(x)$ is positively asymptotic and $\gamma^-(x) \cap (X \setminus \tilde{U}) \neq \phi$.

2) if $x \in N_{\overline{v}} \setminus N_{v}$, then $\gamma(x)$ is negatively asymptotic and $\gamma^{+}(x) \cap (X \setminus \overline{U}) \neq \phi$.

Therefore, if $x \in n_{\nu}^+ \setminus n_{\nu}$, then $x \in (N_U^+ \setminus N_U) \cap S_{\sigma}$, so that $\gamma(x)$ is positively asymptotic. On the other hand,

 $[\gamma^{-}(x) \cap (X \setminus \overline{U})] \cap S_{\sigma} = \gamma^{-}(x) \cap (S_{\sigma} \setminus \widetilde{V}), \text{ while}$

 $\gamma^{-}(x) \cap (X \setminus \overline{U}) \cap S_{\sigma} = [\gamma^{-}(x) \cap S_{\sigma}] \cap (X \setminus \overline{U})$

 $=\gamma^{-}(x)\cap (X\setminus \bar{U})\neq\phi, \quad \text{therefore} \quad \gamma^{-}(x)\cap (S_{\sigma}\setminus \tilde{V})\neq\phi.$

Similarly, if $x \in n_{\overline{v}} \setminus n_{\overline{v}}$, then $\gamma(x)$ is negatively asymptotic and $\gamma^+(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$.

The following two propositions are clear:

1) if $x \in n_{\nu}$, then $\gamma(x) \subset \tilde{V} \setminus F$,

2) if $x \in g_{\nu}$, then $\gamma^+(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$ and $\gamma^-(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$.

Finally, it is known that if $x \in F$, then $\gamma(x) \subset F$ and $\gamma(x)$ is Poisson stable.

We summarize above results as follows:

Theorem 14. Let S be a quasi-minimal set which is not minimal. Let F be an isolated minimal set contained in S.

Then, there exists a relative neighborhood V such that the orbits passing a point of \tilde{V} , the relative closure of V in S_{σ} , are classified as follows:

1) if $x \in F$, then $\gamma(x)$ is Poisson stable and $\gamma(x) \subset F$,

2) if $x \in n_{V}^{+} \setminus n_{V}$, then $\gamma(x)$ is positively asymptotic and $\gamma^{-}(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$.

3) if $x \in n_{\overline{v}} \setminus n_{\overline{v}}$, then $\gamma(x)$ is negatively asymptotic and $\gamma^+(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$.

4) if $x \in n_{v}$, then $\gamma(x) \subset \tilde{V} \setminus F$.

5) if $x \in g_{\nu}$, then $\gamma^+(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$ and $\gamma^-(x) \cap (S_{\sigma} \setminus \tilde{V}) \neq \phi$.

References

- H. F. Hilmy: Sur les ensembles quasi-minimaux dans les Systemès dynamiques. Ann. Math., 37 (1936).
- [2] T. M. Cherry: Topological Properties of the solutions of ordinary differential equations. Am. Jour. of Math., Vol. 59 (1937).
- [3] T. Saito: Global theory of the dynamical systems (in Japanese). Funk. Ekv. XVII N-ro 1 (1964).
- [4] ——: Isolated Minimal Sets. Funkcialaj Ekvacioj, 11 (1968).