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The purpose of this Note is to show that the proposition (I) and
(II) below are equivalent to the Generalized Continuum Hypothesis,
in the Zermelo-Fraenkel set theory, without the Axiom of Choice.
Propositions (I) and (II) deal with a topological property--property K
--of a particular type of topological group. Property K is related with
the uniform continuity of all continuous real-valued functions defined
on a group.

1. Preliminaries and notations.

We consider the Zermelo-Fraenkel axiomatic set theory, without
the Axiom of Choice.

For any set Z, 2z is the potence set of Z and 2Z is the set (0, 1} Z.
In 3, according to the notations of [2], for any set Z, we put
Po(Z)--Z, P(Z)--2z and P(Z)--P(P_I(Z)), i-1,2, 3, 4.

For any two sets A and B, A4B means that there is an injective
map rom A into B;AB means that AB and A and B are not
equipotent sets AzB means that A and B are equipotent sets (i.e., by
virtue o Bernstein-Cantor theorem, A<B and B A). Finally, A +B
indicates the disjoint sum of the sets A and B.

Let (G, v) be a topological group and let U denote the right uni-
formity o G. (G, ) has property K if and only if any continuous
real-valued unction on G is a uniformly continuous map o (G, U)
into R (i.e., i f: G-R is continuous and r is a positive real number,
there is an open neighborhood o the neutral element o G, V, such
that i x, y e G and y e Vx, then f(x)-f(Y)l r). The group opera-
tion is denoted multiplicatively.

Let S be an infinite set. (0, 1} is an algebraic group with the
ollowing operation: if x-(xs)ses and y--(ys)ses belong to (0, 1}s, then
xy=(xsy)es, where 01=10=1 and 00=11=0.

Let M be an infinite set, S be a set with 2S, and put
G(S)=[x(O, 1}I{seS]x=I}<M}, where x=(x). We say that
G(S) is a group if G(S) is a subgroup of {0, 1}s.

For any infinite sets M, Y and S, with M Y<2 < S, let B(Y) be
the set of all elements G(S) I-[ V, where V{0,1}, vs e S and

sS
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{S e S[ V=/={0, 1}}< Y. We shall denote by v(Y) the set of all unions o
elements o B(Y).

Remark. i G(S) is a group and v(Y) is a topology in G(S), then
G(S) with the topology v(Y) is a Hausdorff topological group. Thus,
denoting by G(S, Y) the pair (G(S),v(Y)), G(S, Y)is a topological
group means that G(S) is a group and v(Y) is a topology in G(S).

2. Propositions (I) and (II).
( I ) For any infinite sets M, Y and S, with M< Y<2 < S, if

G(S, Y) is a topological group, then G(S, Y) has property K.
(II) For any infinite sets M and Y, with M< Y<2, if G(2, Y)

is a topological group, then G(2n, Y) has property K.
It is obvious that (I) implies (II).

Theorem 1. For any infinite sets M, Y and S, with M< Y<2 < S,
if G(S, Y) is a topological group and has property K, then Yz2.

Proof. On the contrary, let us suppose that there are infinite
sets M, Y and S, with M< Y<2 < S, such that G(S, Y) is a topological
group and has property K.

The set 2M is equipotent with a subset o] S; to simplify the .nota-
tions, we shall identify both sets; thus we shall suppose that 2CS.

For any P e 2, let V(P) be equal to the set 1-[ V, where V,= {0}
sS

and V= {0, 1} otherwise. It follows that the set G(S)fq V(P) is not
P2M

a neighborhood o the neutral element o G(S).
Putting M’={{t}]t e M} (thus M’cS), or any P e 2*, let a be the

element (x)e, where x=l i s e {{t}]t e P} and x=0 otherwise.
Finally, put W= I-[ W, where W={0} i s e M’ and W={0, 1} other-

sS

wise.
Now, we consider the open-closed set A, where A ) (G(S) V(P)

p2M

W)a. Since G(S, Y) has property K, there exists a set V e B(Y),
neighborhood of the neutral element of G(S), such that VW and
VA A. It follows that V G(S) V(P), which is impossible.

P2M

So we have Y 2.
Corollary. (II) implies that for any infinite sets M and Y, with

M Y 2, if G(2M, Y) is a topological group, then Y 2.
3. In this section we shall prove that (II) implies the Generalized

Continuum Hypothesis.
Generalized Continuum Hypothesis: For any infinite set M, there

is no set Z, such that MZ2.
Zermelo theorem: Any set can be well-ordered.
Theorem 2. (II) implies the Zermelo theorem.
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To prove Theorem 2 we shall need the following two lemmas ([2],
pages 148-149)"

Lemma 1. For any infinite set X, there is a well-ordered set W,
such that W P(X) and we do not have W<X.

Lemma 2. If X and Y are sets such that X+ YzP(2X), then
Y> P(X).

Remark. Let A be a nonempty set and let N be the set of all
natural numbers. Put B--P(A + N) thus, since A +N+N A+ N,
we haveNB<22a/2a+/B. For any i=l, 2, 3, 4, wehave
that P,(B) < 2P,(B) < N P,(B) < 2 2-< 2- P,(B). The
set A is naturally embedded in B. If B can be well-ordered, then A
can be well-ordered.

The proof of Theorem 2 follows that of Cohen [2], page 149.
Proof of Theorem 2.
Let X be a set; we shall prove that X can be well-ordered. We

may suppose that X:/:fl (if X is empty the result is obvious). First,
we suppose that NP,(X)P,(X) for i-1,2,3,4 (by virtue of the
remark above, it is sufficient to consider this case). Let W be a well-
ordered set, such that WPt(X) and we do not have W<X.

Since N P(X) P(X), we have P(X)<N W+P(X)<P(X).
By virtue of Theorem 1, it is not possible that P(X) N W+P(X)
<P4(X), because G(P(X), Y), where M-P(X) and Y--N W+P(X),
has property K. Thus, we have N W<P(X) or N W>P(X), by
virtue of Lemma 2. In this last case, P(X) and, thus, X, can be well-
ordered, because N W can be well-ordered.

If N W<P(X), we have P(X)<N W+P(X)<P(X). So we
may use the same argument as before. It follows that N W<P(X)
or N W>/P(X). (We apply the same argument again.)

Finally, we recall that if X<N W+X<P(X), then, necessarily,
we have Nx W>P(X). The proo is completed.

Theorem 3. (II) is equivalent to the GCH.
Proof. Let M and Y be two infinite sets, with MY<2. Since

(II) implies the Zermelo theorem, and thus the Axiom of Choice, we
have Mz2M and Y.2Y. It follows that G(2) is a group and v(Y)
is a topology in G(2). Thus, by the corollary of Theorem 1, Y 2.

Now, let us prove that the GCH implies (II). Let M and Y be
two infinite sets, with M Y<2. By the GCH, Y 2 and, since the
GCH implies the Zermelo theorem ([2], page 149), G(2) is a group.
It is obvious that v(Y) is the discrete topology in G(2) thus, G(2, Y)
has property K.

4. In the present section, we suppose that the Generalized Con-
tinuum Hypothesis (and, thus, the Axiom o Choice) is verified. It
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follows that for any infinite sets M and S, with 2’<S, G(S, 2) is a
topological group.

Theorem 4. For any infinite sets M and S, with 2 <S, G(S, 2)
has property K.

Proof. Let M and S be two infinite sets, with 2<S. If S2,
then G(S, 2) is a discrete topological group and the result is obvious.
So let us suppose that 2S. To prove that G(S, 2) has property K
is sufficient to show that for any open-closed subset A of G(S), there
is a neighborhood W of the neutral element of G(S), such that WA-A.

To simplify the notations, we denote by D the set
{s SI V:/: {0, 1}} <2}, where V= ]-[ V,. Let / be the first ordinal

number of cardinality equal to 2 and H be the set of all ordinal
numbers smaller than /. If and /9 belong to H, a((/9 means that
the ordinal number is smaller than the ordinal number /9. (We use
< to avoid any confusion with , introduced at 1.) We recall that
if e H, then ’, the ordinal successor of , belongs to H.

Let A be an open-closed subset of G(S), )=/= A = G(S), and B be the
complementary set of A thus, G(S)--A [J B.

Let us suppose that there exists a family (S)e of subsets of S,
verifying the following conditions"

a) S<2,v e H and ScS, vo, H,/<<H
b) if xe G(S),x-(x)es, and {seSlx-l}cS, for a convenient

aeH, then there exists a set VeD, V-- V., such that xe V,

{s e S V =/= {0, 1}} c S,, where a’ is the ordinal successor of , and
G(S) VcA or G(S) VcB.

Putting P-J3 S and W-I-[ W,, where W-{0} if seP and

W-{0, 1} otherWise, it follows that (G(S) W)A-A. Indeed, if
(a).es belongs to A, there is e H, such that {s e P a- 1} c S.
(Because for any nonempty subset K of H, with K<M, the ordinal
supremum of K belongs to H.)

Thus to complete the proof it suffices to show how to construct
such a family (S)e. Let V e D, V= ]-[ V, such that 0 e V, vs e S, and

sS

G(S) VcA or G(S) VcB. We put S0= {s e S V {0, 1}}. Now let
us suppose that for an ordinal 2 e H, 2 :/:0, we have the sets S for any
a<<2, satisfying the conditions"

al) S.<2,vaeH,<< and S c S. vo fl e H fl << o << 2
a) if x e G(S), x-(x)es, and (s e SI x-l}cS. or some e H,

with <<’<<, there is a set VeD, V-- ]-[ V, such that xe V,
seS

{s e SI V:/:{O, 1}}cS., and G(S) VcA or G(S) VcB.
Let us construct S;. For each x e G(S), x-(x.)es, with {s e S]x-l}
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cT, where T=(J{S, lqeH,<<2}, we fix a set VeD, V= [[ V,
such that xe V and G(S)VcA or G(S)VcB. We put
S=TUJ {s e SI V:/:{0,1}}, where U=((x,)eseG(S)l{se SIx=l)cT}.

xU

Since T4 2 we have that S42.
Thus, by applying the argument above and transfinite induction,

there is a amily (S,).e verifying the conditions a) and b).
5. From the precedent sections, we have that (I) implies (II) and

(II) implies the GCH (Theorem 3). On the other hand, if the GCH
(and, thus, the Axiom of Choice) is verified, by virtue of Theorem 4,
we have that "for any infinite sets M, Y and S, with M< Y 2 S,
G(S, Y) is a topological group and has property K" (because, neces-
sarily, Yz2). Thus, we proved the following theorem"

Theorem 5. In the Zermelo-Fraenkel set theory, without the
Axiom of Choice, the following propositions are equivalent:

1) proposition (I);
2) proposition (II);
3) Generalized Continuum Hypothesis.
Remark. We thank Professor Newton C. A. da Costa for draw-

ing our attention to the fact that the Axiom of Regularity is not used
in the above proofs.
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