248. Representations of 1-homology Classes of Bounded Surfaces

By Shin'ichi SUZUKI Department of Mathematics, Kobe University (Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1970)

Let $F_{p,q}$ be a compact connected orientable surface of genus p with q boundary components, where q may be equal to 0. Let $a_1, \dots, a_p, b_1, \dots, b_p, c_1, \dots, c_{q-1}$ be standard generators for the 1-dim. integral homology group $H_1(F_{p,q}; Z)$. Here the c_i correspond to consistently oriented boundary circles (one is omitted because it is homologous to the sum of the others), and the a_i and b_i are standard curves on $F_{p,q}$, chosen so that $a_i \cap a_j = b_i \cap b_j = a_i \cap b_j = \emptyset$ if $i \neq j$ and a_i, b_i intersect nicely at one point.

In the case q=0, T. Kaneko [1], [2] proved the following theorem:

Kaneko's Theorem. A non-zero homology class $\sum_{i=1}^{p} \alpha_i a_i + \sum_{i=1}^{p} \beta_i b_i$ of $H_1(F_{p,0}; Z)$ is representable by a simple closed curve on $F_{p,0}$ if and only if the greatest common divisor $(\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_p) = 1$.

In the note, we generalize this theorem for bounded case as follows:

Theorem. A non-zero homology class $\sum_{i=1}^{p} \alpha_i a_i + \sum_{i=1}^{p} \beta_i b_i$ + $\sum_{i=1}^{q-1} \gamma_i c_i$ of $H_1(F_{p,q}; Z)$ is representable by a simple closed curve on $F_{p,q}$ if and only if one of the following two conditions is satisfied:

(1) Not all the α_i and β_i are zero and the g.c.d. $(\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_p) = 1$,

(2) $\alpha_i = \beta_i = 0$ for $1 \leq i \leq p$ and $|\gamma_i| \leq 1$ for $1 \leq i \leq q-1$ and all non-zero γ_i have the same sign.

Proof of necessity. Let l be an oriented simple closed curve in $\mathcal{J}F_{p,q}$.¹⁾ Fill in each boundary component with a disk, obtaining $F_{p,0}$.

If now l is not homologous to zero on $F_{p,0}$, by Kaneko's Theorem we fall into case (1) since $a_1, \dots, a_p, b_1, \dots, b_p$ form standard generators for $H_1(F_{p,0}; Z)$.

If l is now homologous to zero on $F_{p,0}$, l bounds a surface $F_{p',1}$ on $F_{p,0}$ where $0 \le p' \le p$, and so l separates $F_{p,q}$ into two surfaces, say $F_{p',q'}$ and $F_{p-p',q+2-q'}$. On $F_{p',q'}$, l or -l is homologous to the sum of $\partial F_{p',q'}$ $-l \subset \partial F_{p,q}$, so we fall into case (2) above.

Proof of sufficiency. We shall need the following elementary lemma.

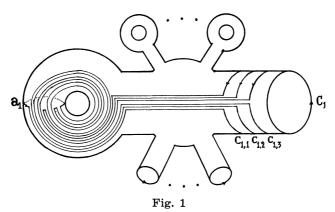
Lemma. A homology class $a_1 + \gamma c_1$ is representable by a simple

¹⁾ $\mathcal{J} = \text{interior}, \ \partial = \text{boundary}.$

No. 10] Representations of 1-homology Classes of Bounded Surfaces 1097

closed curve in $F_{p,q}$.

Proof of Lemma. Without loss of generality, we may assume that $\gamma \ge 1$. Let $c_{1,1}$ be an oriented simple closed curve in $\mathscr{F}_{p,q}$ such that $c_{1,1}$ is isotopic to c_1 and $c_{1,1} \cap a_1 = \emptyset$. Then we can take an oriented disk D on $F_{p,q}$ that spans a_1 and $c_{1,1}$ with discoherent orientation. Now, the homological addition of three oriented curves $a_1 + c_{1,1} + \partial D$ is an oriented simple closed curve, say a'_1 , representing the homology class $a_1 + c_1$, see Fig. 1. Since $a_1 + c_1 = a'_1$ is not homologous to zero and $\sum_{i=1}^{q-1} \xi_i c_i$ for any ξ_i , we can take another standard generators for $H_1(F_{p,q}; Z)$ which contains a'_1 and c_1, \dots, c_{q-1} . So, applying the above argument for a'_1 and c_1 , we have an oriented simple closed curve a''_1 representing the homology class $a'_1 + c_1 = a_1 + 2c_1$.



Repeating of this procedure, we have an oriented simple closed curve representing the homology class $a_1 + \gamma c_1$ for any γ . (The Fig. 1 shows the case $\gamma = 3$.) Q.E.D.

We are now going to prove the sufficiency of Theorem.

(1): If $(\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_p) = 1$, then the homology class $\sum_{i=1}^{p} \alpha_i a_i + \sum_{i=1}^{p} \beta_i b_i$ is representable by an oriented simple closed curve, say a'_1 , in $\mathcal{J}F_{p,q}$ by Kaneko's Theorem, since the arguments of [1] and [2] can be applied for a bounded surface $F_{p,q}$. Because this a'_1 is not homologous to zero and to $\sum_{i=1}^{q-1} \xi_i c_i$ for any ξ_i , we can choose another standard generators for $H_1(F_{p,q}; Z)$ which contains a'_1 and c_1, \dots, c_{q-1} . So by Lemma, the homology class $a'_1 + \gamma_1 c_1 = \sum_{i=1}^{p} \alpha_i a_i + \sum_{i=1}^{p} \beta_i b_i + \gamma_1 c_1$ is representable by a simple closed curve a''_1 in $\mathcal{J}F_{p,q}$. Of course, a''_1 is not homologous to zero and to $\sum_{i=1}^{q-1} \xi_i c_i$ for any ξ_i , and so we can choose another standard generators for $H_1(F_{p,q}; Z)$ which contains a''_1 and c_1, \dots, c_{q-1} . Applying Lemma for a''_1 and c_2 , we have a simple closed curve a''_1 representing the homology class $a''_1 + \gamma_2 c_2$.

Repeating of this procedure, we have a required simple closed curve on $F_{p,q}$.

S. Suzuki

(2): Suppose that α_i, β_i and γ_i satisfy the condition (2) of the Theorem. Then, by spanning the oriented boundary circles $\gamma_i c_i$ as the same manner as the proof of Lemma, we can easily construct a required simple closed curve on $F_{p,q}$.

This completes the proof of Theorem.

References

- T. Kaneko, K. Aoki, and F. Kobayashi: On representations of 1-homology classes of closed surfaces. J. Fac. Sci. Niigata Univ., Ser. I, 3, 131-137 (1963).
- [2] T. Kaneko: On representations of 1-homology classes of closed surfaces.
 II. Sci. Rep. of Niigata Univ., Ser. A, 2, 1-5 (1965).