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1. In the previous paper [6], we have introduced algebraic models
of von Neumann algebras as a non-commutative extension of algebraic
models of measures due to Dinculeanu and Foias [2], and we have
proved that an algebraic model determines the algebra structure up to
isomorphisms (unfortunately, avon Neumann algebra can not decide
an algebraic model within isomorphisms).

In an another note [3], Dinculeanu and Foias, introduced an
another concept, that is, algebraic models for measure preserving
transformations. In 2, we shall extend the above notion to an
automorphism of von Neumann algebra. In 3, we shall present a
measure system which is an algebraic model for the crossed product
of a yon Neumann algebra by an automorphism group. And in 4,
we shall present an algebraic ergodic system which is an algebraic
model for a certain automorphism of the crossed product.

Dinculeanu and Foias [3] introduced also the notion of discrete
models of measures and established several important theorems.
A non-commutative variant of discrete models gives a characterization
of group yon Neumann algebras. We shall discuss discrete models in
a subsequent paper.

Throughout the note, we shall use the terminology of [4] without
explanations.

2. Let (F, (f) be a measure system introduced in [6], U be an
isomorphism of F into F. Then we shall say (F, U, 9) an algebraic
ergodic system if

(UT)=(7) for every 7 e F.
Two algebraic ergodic systems (F, U, f) and (3, V, ) are called iso-
morphic if there exists an isomorphism of F into d such that

) (7)
and
(ii) qU= V.

Definition 1. Let (F, f) be an algebraic model for a yon Neumann
algebra with a generating vector x and U an isomorphism of F
into F. Let a be an automorphism of . An algebraic ergodic
system (F, U, ) is an algebraic model for r if

J(UT)=J(7)" for 7 e F,
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where J is an isomorphism of F into F(7) satisfying

(JF)’--
and

(y)-(Jyx]x) for y e F.
The ollowing theorem is a nonabelian orm of a theorem of

Dinculeanu-Foia [3; Theorem 1]"
Theorem 1. Let and _q) be yon Neumann algebras acting cycli-

cally on and
respectively. If the algebraic models (F, U, ) for tz and (, V, +) for
fl are isomorphic, then there exists an isomorphism
such that qo-

Proof. Let be a spatial isomorphism such that
[Jy]-J(y) or y e F

as in the proof of [6 Theorem 2], where is an isomorphism of F onto
z such that CU-V. Since JU-J and JV=J, where J(y)=J(y),
then

a[J] [J-] [Ju] J[u] JEV]

Since (JF)"- and since a, fl and are ultraweakly continuous, we
have a-

3. When (F, ) is an algebraic model or 7, it is interesting to
know what measure system related to (F, ) is an algebraic model or
the crossed product (R)G of
From this point of view, in this section we make an effort or getting
response to the above question.

At first we shall briefly review the notion of the crossed product
of von Neumann algebras introduced by [7]. Let Z be avon Neumann
algebra acting on with a generating vector x, G a countable group
o automorphisms o 7. Choosing an othonormal base ()e o l(G),
where

(?’)
=0 otherwise,

we can express every vector y e (R)l(G) in the form
y= F, (R),

where e and

If we put
Uo[ E $(R)]- E U(a)$(R),

where U(a) is a unitary operator on s determined by an algebraic
model (F, ) for 7 and

U(a)[J(y)x]=J(y)-x (y e F),
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then U. is a unitary operator on @l(G) which satisfies
UU=U,
U* -U_

and

for a e Y7 and a,/9 e G.

and

U*. (a(R)l)U.-a"(R)l,
Furthermore, we have
(AU.)(BU)-AB"-IU.

(AU.)*-A*"U*.,
where A-a(R)l and B-b(R)l for a, b . The crossed product (R)G
of by G is the weak closure of

{ (al)U a. e }
on @l(G).

Now suppose that the model satisfies
( (JF)"cJF for any a e G.
If we put

-J-J() for e G and e F,
then y" is well-defined.

To proceed further, we shall need some lemmas.
Lemma 2. Let G F be the Cartesian product of G and F. If we

define
(a, T)@(, )=(a, T-,)

for a, e G and e F, then (G x F, ) is a group.
Since the conclusion o the lemma follows from straightforward

eomputations, we shall omit the detail. Hereafter, the group will be
denoted by G@F.

We define a complex-valued function on 6F by the ollowin
equation"

(y) if a- e,p[(a, [)]
-0 otherwise.

Then we have the ollowin lemma"

Lemma . i8 a p08i$ive definite fnction on

Proof. For any finite set of complex numbers c,..., c and
(a,, y,), ..., (a, y) e G@F, we have

v,c[(a,, ,)@(a, )-’]
t,J=l

c,c[(a,a’,
t,j=l

(’)o,
(i, )

where (i, ]) {(i, ])I a,a’--e}.
By Lemmas 2 and 3, we have
Lemma 4. (GY, ) i8 a measure 88e.
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Now we can prove the ollowing

Theorem 5. Let (F, f?) be an algebraic model for a yon Neumann
algebra d with a generating vector x. If G is a countable group of
automorphisms of d satisfying the condition (.), then (G(R)F, 4f) is an
algebraic model for (R)G.

Proof. At first we define
J[(a, 2")]- (J(,)(R))U

or (a, 7") e G(R)F (where J is an isomorphism of F into F() determined
by (F, )). Then we have

J[(a, ,)(R)(fl, )] =J[(a/9, .-)]
(J(--9(R))u
(J(y)(R)l)(J()-l(R)l)UU
(]()(R)) uo(J()(R))u

=J[(a, y)]J[(fl, )]
or every (a, y), (, ) e G(R)F, which shows that J is a homomorphism
o G(R)F into F((R)G).

J[(a,y)]=J[(,)] implies J(-y)(R)l=U_ and choosing any
orthonormal base (e) oi 2), we have

(J(c-7")e e) (U(o-)e e)((_ c)
or any i and ]. If fla-:/:e then (J(c-7")elQ)-O for any i and ], which
is a contradiction. Therefore fl= a, or

J((-y)(R)l-- 1,
which implies =’. Hence J is one-to-one.

Since (JF)"=, we have J[G(R)F]=d(R)G.
Furthermore, since x(R) is a generating vector for (R)G, we have

(J[(a, ,)]x(R) x(R))= ((J(2")(R)l)(U(a)x(R)c)lx(R))

=(J(7")U()x,x)(lP- fJ(7")x’x) (-e)
(a=e)

[(a, 7)]
or any (a, ’) e G(R)F. This completes the proof.

4. Let (F, U, ) be an aOgebraic model or an automorphism 0 of
an von Neumann algebra with a generating vector x. Let G, G(R)F, 4x
be as in Theorem 5.

Now suppose that 0 commutes with all elements of G. If we put
U[(a, ,)]-(a, U,),

then U is an isomorphism of G(R)F into G(R)F. Indeed,
u[(, )(R)(/, )] (a/, uu(o-’)).

Since 0 commute with G, we have
J[U(-’)] J(--) J(-,) (J())-’ J[U()-’].

Hence
U(-’) (U)-’ for any a e G.

Therefore



No. 10] Algebraic Model for yon Neumann Algebras. II 1095

?[(a, r)(R)(, )] (a/, ur(u)-’)
?[(a, )](R)}[(/, )],

or U is a homomorphism of G(R)F into G(R)F. By the definition, U is
one-to-one.

Summing up, we have
Lemma 6. (G(R)F, f, ) is an algebraic ergodic system.
Conveniently, we shall identify I(R)G with {UlaeG}, cf. [1].

Under these circumstances, we shall show
Theorem 7. Let (F, U,) be an algebraic model for an auto-

morphism of a yon Neumann algebra G, G(R)F, 4x as in Theorem 5
and

[(a, ;,)]=(a, U?) ((a, ’) e G@F).
If t? commutes with all elements of G, then (G(R)F, U, ) is an algebraic
model for 0(R)1 which is an automorphism of A(R)G.

In the theorem, 8(R)1 is defined as in [5] by
[J(y)(R)l) U](R)= (J(T)(R)l)U

or every a e G and T e F.
Proof. Let ] be an isomorphism of G(R)F into F(j(R)G) as in

Theorem 3. Then we have any (a, T)e G(R)F
]}[(a, )]=](a, U)=(J(U)(R)i)U

(J(T)(R)i)u= (J(T)(R)i) u)(R)

=J[(a, T)]"
Since the other part of the proof is clear, this completes the proof.
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