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243. On Quasi-k-Spaces

By Yoshio TANAKA
(Comm. by Kinjird KUNUGI, M. J. A., Dec. 12, 1970)

0. Introduction. In this paper, we shall treat the case that the
product space is a quasi-k-space. In Section 1, we give definitions and
preliminaries. In Section 2, we shall prove the following theorems ;

(a): A space X is locally countably compact if and only if XX Y
is a quasi-k-space for every sequential space Y.

(b): Let X and Y be sequential spaces. Then X x Y is a sequential
space if and only if it is a quasi-k-space.

(c¢): If X is asequential g-space, and Y is a k-space and a g-space,
then X x Y is a k-space and a g-space.

Finally, in Section 3, we consider the product space of uncountably
many spaces.

We assume all spaces are regular and T',, and all maps are continu-
ous and onto. The weak topology in the sense of J. Dugundji [5], will
be used throughout this paper.

1. Definitions and preliminaries. A space X is called a quasi-k-
space (sequential space) if a subset F' of X is closed whenever FFNC is
closed in C for every countably compact (compact metric) subset C of
X by J. Nagata [12] (S. P. Franklin [6]) respectively. Quasi-k-spaces
(Sequential spaces) are precisely the quotients of M-spaces defined by
K. Morita [11] (metric spaces) respectively. Of course, sequential
spaces are k-spaces and k-spaces are quasi-k-spaces. But the converses
do not hold. Indeed, the Stone-Céch compactification of a normal and
non-compact space is not sequential, and a countably compact space
A, constructed by J. Novak [13] is not a k-space.

Lemma 1.1. Let f;: X,—Y, (i=1,2) be quotient and X, be
sequential. If Y, x Y, has the weak topology with respect to F={Y, X C;
C is closed countably compact in Y,}, then f, X f, is quotient. Especial-
ly, when f, is closed, the closedness of the subset C is omitted.

Proof. From the fact that f,|f;*(C) is quotient for every closed
subset C of Y,, and that if f, X f,|(fiX ) '(F) is quotient for every
F e g, then f,Xf, is quotient, we can assume Y, is countably compact.
Moreover, sequential spaces are the quotients of locally compact metric
spaces by S. P. Franklin [6; Corollary 1.13], we can also assume X, is
locally compact metric. Now, fiX fo=(f, X1y, (ix, X f) and ix, X f, is
quotient by J. H. C. Whitehead [15; Lemma 4], and f, X iy, is quotient
by E. Michael [9; Theorem 4.1], f, X f, is quotient.
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Lemma 1.2. (a) If X is a sequential space, then a countably
compact subset of X is always closed. (b) Let X be either normal or
countably paracompact. If C is a countably compact subset of X, then
C is also countably compact.

Proof. (a) is easily proved by the definition of a sequential space.
(b) Let X be normal. Assume that C is not countably compact. Then
there exists a discrete set {x;; i n} contained in C. Hence we can
choose a discrete collection {V,;¢e N} of open subsets with x,¢ V, by
the normality of X. Since ;¢ C, there exists a sequence {y,;i¢c N}
with y,e V,;NC. But C is countably compact, the sequence {y,; ¢ N}
has a cluster point. This is impossible. In case X is a countably
paracompact space, from F. Ishikawa [7], (b) is proved straight-
forwards.

Remark. In completely regular spaces, (b) need not be true. In-
deed, let X=1[0,2]x[0,w] —(2,w), where w is the first non-finite ordinal
and @ is the first uncountable ordinal, and let A=[0, 2) X [0, w]. Then
A is countably compact but A= X is not countably compact.

According to E. Michael [8], a space X is called a ¢-space if each
point of X has a sequence {U,; e N} of open nbds (=neighborhoods)
such that U,,,c U,, and if x, e U,, then the sequence {x,;7e N} has a
cluster point. Such a sequence is called a ¢-sequence of nbds. Locally
countably compact spaces, M-spaces, and spaces of pointwise countable
type defined by A. Arhangel’skii [1] are all ¢-spaces. A g¢-space is a
quasi-k-space by J. Nagata [12].

Lemma 1.3. if (a) X XY is a g-space, or (b) X XY is a quasi-k-
space and Y is normal or countably paracompact, or sequential, then
X XY has the weak topology with respect to C={XxC; C is closed
countably compact in X}.

Proof. (a): Put X;=X and X,=Y. Let F be a subset of X, XX,
such that FNC is closed for every Ce (. Let (%, 2, ¢ F' be given and
V., be any open nbd of z;. Since X, x X, is a g-space, it has a g-sequence
{(W,;x Wy, j € N} of a point (x,, z,). Let W7; be an open nbd of z; such
that W,,,,Cc W;,CV,;NW,, for each je N. Since (z,,, ¢ F', there ex-
ists a sequence {(z,;, 2,)) ; 7 € N} with (x,;, ,)) e FN(Wy;x W3y). Put C,
=51 Wy and Ci={x,;; 7€ NYUMN5., W3, then C, and C; are closed
countably compact in X,, and the sequence {x,,x,,) ;e N}, whose
closure is contained in a closed subset F'N (X, x C3), has a cluster point
in (VixVy)N(X,xC,. Hence (x,,2,) ¢ F by the closedness of FN (X,
X C;). Therefore X, x X, has the weak topology with respect to C.
(b) : Since every subset K of X XY is contained in X X Py(K), where
Py is the projection of XxY onto Y, and P,(K) is closed countably
compact for every countably compact subset K of X XY by Lemma 1.2,
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X x Y has the weak topology with respect to C.

From T. Chiba [4; Theorem 4], Lemma 1.1, and Lemma 1.3, we
have

Proposition 1.4. Let f,: X;—Y, (i=1,2) be quotient maps and
X, be a sequential space. If (a) Y, and Y, are g-spaces, or (b) Y, XY,
18 o quasi-k-space and Y, is either normal or countably paracompact,
then f,X f, is quotient.

Remark. Lemma 1.1 remains true if we replace the words
“sequential” and “closed countably compact” by “a k-space” and
“compact’ respectively, which leads to E. Michael [10; Theorem 1.5].

2. Proof of theorems.

Theorem 2.1. The following properties of a space X are equi-
valent.

(a) X is alocally countadbly compact space.

(b) XXxY isa quasi-k-space for every sequential space Y.

(¢) X XY is a quasi-k-space for every paracompact sequential
space Y.

Proof. (a)—(b): Let Y, be the topological sum of the family {C;
C is compact metric in Y}, and f be the quotient map of Y, onto Y.
Then f X iy is quotient by E. Michael [9; Theorem 4.1 (a)—(b)]. Since
Y, x X is a quasi-k-space and quotients of quasi-k-spaces are quasi-k-
spaces, X X Y is a quasi-k-space.

(b)—(c): Obvious.

(¢)—(a): Assume that X is not countably compact.

From E. Michael [9; Theorem 4.1 (¢)—(a)], there exists a closed map
g of a metric space onto a space Y such that iy X ¢ is not quotient.
Since Y is a paracompact sequential space, X X Y is a quasi-k-space by
the hypothesis. From Lemma 1.1 and the proof of Lemma 1.3 (b), iy
X ¢ is quotient, which is impossible.

Theorem 2.2. Let X and Y be sequential spaces. Then X xY is
sequential if and only if it is a quasi-k-space.

Proof. The “only if” part is obvious.

“if”: Let X, and Y, be the topological sums of the families {C; C
is compact metric in X} and {C’; ¢’ is compact metric in Y} respec-
tively, and let f: X,—X, g: Y,—Y be quotient. Since XX Y is a quasi-
k-space and Y is sequential, from Lemma 1.1 and Lemma 1.8 (b), X g
is quotient. Since X, x Y, is metric, X X Y is sequential.

From T. Chiba [4; Theorem 4] and J. Nagata [12; Corollary to
Theorem 1], and Theorem 2.2, we have

Corollary 2.3. If X and Y are sequential q-spaces, then X XY is
a sequential g-space.

From Theorem 2.1 and Theorem 2.2, we have
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Corollary 2.4 (T. K. Boehme [38]). If X is a locally countably
compact, sequential space and Y is a sequential space, then X XY is a
sequential space.

According to P. Bacon [2], a space X is called isocompact if every
closed countably compact subset of X is compact. Paracompact spaces,
o-spaces, and developable spaces are all isocompact spaces.

Theorem 2.5. Let X be either normal or countably paracompact.
If (a) X is isocompact and Y is a k-space, or (b) X is a k-space and Y
18 sequential, then X XY is a k-space if and only if it is a quasi-k-space.

Proof. Let X XY be a quasi-k-spaces. (a) X xY has the weak
topology with respect to {Px(K)x Y ; K is countably compact in X X Y},
where Py is the projection of X XY onto X, and Py(K) is compact for
every countably compact subset K of X XY by Lemma 1.2 (b). From
Remark to Proposition 1.4, X X Y is a k-space by the same way as in the
proof of Theorem 2.2. (b) Similarly, from Proposition 1.4 (b), X X Y is
a k-space.

Remark. Lemma 1.8, Proposition 1.4, and Theorem 2.5 remain
true if we replace the words “normal” and ‘“‘countably paracompact”
by “locally normal” and ‘“locally countably paracompact’ respectively.

According to A. Arhangel’skii [1], a space X is called of pointwise
countable type if each point of X is countained in a compact subset
having a countable local basis.

Theorem 2.6. Let X be a k-space and a g-space. If Y is either a
space of pointwise countable type or a sequential q-space, then X XY
s a k-space and a g-space.

Proof. From T. Chiba [4; Theorem 4], X X Y is a g-space. If Y
is of pointwise countable type, put X=X, an Y=X,, then the subsets
C,, C} in the proof of Lemma 1.3 (a) are compact. Hence X XY has the
weak topology with respect to {X X C; C is compact in Y}. Therefore,
by the same way as in the proof of Theorem 2.5 (a), X XY is a k-space.
Similarly, if Y is a sequential g-space, X X Y is a k-space by Proposi-
tion 1.4 (a).

3, In this section, we consider the product space of uncountably
many spaces.

From the fact that every subset K of []..,X. is contained in
[Taca P.(K), where P, is the projection of [],.,X, onto X,, and
Lemma 1.2, we have

Theorem 3.1. Let X, be an isocompact space which is normal,
or countably paracompact, or sequentia | for each aoc A. Then [|,e. X,
18 isocompact, and it is a k-space if and only if it is a quasi-k-space.

Lemma 3.2, If [[.caX. %8 @ g-space, then all but a countable
number of spaces X, must be countably compact.
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Proof. Assume that there exists an uncountable subset A’ of A
such that X, is not countably compact for each a’ ¢ A’. Then Y,. con-
tains a copy of N, say N,., as a closed subset for each o’ ¢ A’. Since
[Tarear No- is closed in [],cq X,, it is a g-space. Then there exists a ¢-
sequence U={U,; ¢ € N} of a point of [],cs N, such that each U, is
an open basic subset of [[.,c. N,. Put K=N3, U, K is countably
compact and for any oped subset 0 of [],.c, N, containing K we can
find U, satisfying Kc U,c0. Let B={a’; a’c A’,P,.(U)*#N,. for some
U in U}, where P,. is the projection of [[,.c4 N, onto N,. Then there
exists an element a; in A’—B. Since P, (K) is compact, P, (K)#N,.
Put 0="P,(K) X []./1a; N.» 0 is an open subset of [].c, N, containing K.
But U,z 0 for each ¢ ¢ N, which is impossible,

Theorem 3.3. Let X, be an isocompact space for each a € A. Then
ees X, is @ g-space if and only if it is of pointwise countable type.
Especially, if each X, is a paracompact M-space, then the following
properties of the product space [[.c. X. are equivalent.

(a) a g-space., (b) an M-space., (¢) a paracompact space.

Proof. Since spaces of pointwise countable type are g-spaces, the
“if” part is proved. The “only if”’ part follows from the fact that iso-
compact g-spaces are of pointwise countable type, and A. Arhangel’skii
[1; Theorem 3.9’], and Lemma 3.2.

Since M-spaces are g-spaces, from K. Morita [11 ; Theorem 6.4] and
Lemma 3.2, (a)<(b) and (b)—(c) are proved. (c)—(b) follows from A.
H. Stone [14; Corollary to Theorem 4] and K. Morita [11 ; Theorem 6.4].
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