243. On Quasi-k-Spaces

By Yoshio TANAKA

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1970)

0. Introduction. In this paper, we shall treat the case that the product space is a quasi-k-space. In Section 1, we give definitions and preliminaries. In Section 2, we shall prove the following theorems;

(a): A space X is locally countably compact if and only if $X \times Y$ is a quasi-k-space for every sequential space Y.

(b): Let X and Y be sequential spaces. Then $X \times Y$ is a sequential space if and only if it is a quasi-k-space.

(c): If X is a sequential q-space, and Y is a k-space and a q-space, then $X \times Y$ is a k-space and a q-space.

Finally, in Section 3, we consider the product space of uncountably many spaces.

We assume all spaces are regular and T_2 , and all maps are continuous and onto. The weak topology in the sense of J. Dugundji [5], will be used throughout this paper.

1. Definitions and preliminaries. A space X is called a quasi-kspace (sequential space) if a subset F of X is closed whenever $F \cap C$ is closed in C for every countably compact (compact metric) subset C of X by J. Nagata [12] (S. P. Franklin [6]) respectively. Quasi-k-spaces (Sequential spaces) are precisely the quotients of M-spaces defined by K. Morita [11] (metric spaces) respectively. Of course, sequential spaces are k-spaces and k-spaces are quasi-k-spaces. But the converses do not hold. Indeed, the Stone-Céch compactification of a normal and non-compact space is not sequential, and a countably compact space A_1 constructed by J. Novák [13] is not a k-space.

Lemma 1.1. Let $f_i: X_i \rightarrow Y_i$ (i=1,2) be quotient and X_1 be sequential. If $Y_1 \times Y_2$ has the weak topology with respect to $\mathcal{F} = \{Y_1 \times C;$ C is closed countably compact in $Y_2\}$, then $f_1 \times f_2$ is quotient. Especially, when f_2 is closed, the closedness of the subset C is omitted.

Proof. From the fact that $f_2|f_2^{-1}(C)$ is quotient for every closed subset C of Y_2 , and that if $f_1 \times f_2|(f_1 \times f_2)^{-1}(F)$ is quotient for every $F \in \mathcal{F}$, then $f_1 \times f_2$ is quotient, we can assume Y_2 is countably compact. Moreover, sequential spaces are the quotients of locally compact metric spaces by S. P. Franklin [6; Corollary 1.13], we can also assume X_1 is locally compact metric. Now, $f_1 \times f_2 = (f_1 \times i_{Y_2}) \cdot (i_{X_1} \times f_2)$ and $i_{X_1} \times f_2$ is quotient by J. H. C. Whitehead [15; Lemma 4], and $f_1 \times i_{Y_2}$ is quotient by E. Michael [9; Theorem 4.1], $f_1 \times f_2$ is quotient. **Lemma 1.2.** (a) If X is a sequential space, then a countably compact subset of X is always closed. (b) Let X be either normal or countably paracompact. If C is a countably compact subset of X, then \overline{C} is also countably compact.

Proof. (a) is easily proved by the definition of a sequential space. (b) Let X be normal. Assume that \overline{C} is not countably compact. Then there exists a discrete set $\{x_i; i \in n\}$ contained in \overline{C} . Hence we can choose a discrete collection $\{V_i; i \in N\}$ of open subsets with $x_i \in V_i$ by the normality of X. Since $x_i \in \overline{C}$, there exists a sequence $\{y_i; i \in N\}$ with $y_i \in V_i \cap C$. But C is countably compact, the sequence $\{y_i; i \in N\}$ has a cluster point. This is impossible. In case X is a countably paracompact space, from F. Ishikawa [7], (b) is proved straightforwards.

Remark. In completely regular spaces, (b) need not be true. Indeed, let $X = [0,\Omega] \times [0,\omega] - (\Omega,\omega)$, where ω is the first non-finite ordinal and Ω is the first uncountable ordinal, and let $A = [0,\Omega) \times [0,\omega]$. Then A is countably compact but $\overline{A} = X$ is not countably compact.

According to E. Michael [8], a space X is called a q-space if each point of X has a sequence $\{U_i; i \in N\}$ of open nbds (=neighborhoods) such that $\overline{U}_{i+1} \subset U_i$, and if $x_i \in U_i$, then the sequence $\{x_i; i \in N\}$ has a cluster point. Such a sequence is called a q-sequence of nbds. Locally countably compact spaces, M-spaces, and spaces of pointwise countable type defined by A. Arhangel'skii [1] are all q-spaces. A q-space is a quasi-k-space by J. Nagata [12].

Lemma 1.3. if (a) $X \times Y$ is a q-space, or (b) $X \times Y$ is a quasi-k-space and Y is normal or countably paracompact, or sequential, then $X \times Y$ has the weak topology with respect to $C = \{X \times C; C \text{ is closed countably compact in } X\}$.

Proof. (a): Put $X_1 = X$ and $X_2 = Y$. Let F be a subset of $X_1 \times X_2$ such that $F \cap C$ is closed for every $C \in C$. Let $(x_1, x_2) \in \overline{F}$ be given and V_i be any open nbd of x_i . Since $X_1 \times X_2$ is a q-space, it has a q-sequence $\{W_{1j} \times W_{2j}; j \in N\}$ of a point (x_1, x_2) . Let W'_{ij} be an open nbd of x_i such that $\overline{W}'_{ij+1} \subset W'_{ij} \subset V_i \cap W_{ij}$ for each $j \in N$. Since $(x_1, x_2) \in \overline{F}$, there exists a sequence $\{(x_{1j}, x_{2j}); j \in N\}$ with $(x_{1j}, x_{2j}) \in F \cap (W'_{1j} \times W'_{2j})$. Put C_2 $= \bigcap_{j=1}^{\infty} W_{2j}$ and $C'_2 = \{x_{2j}; j \in N\} \cup \bigcap_{j=1}^{\infty} W'_{2j}$, then C_2 and C'_2 are closed countably compact in X_2 , and the sequence $\{x_{1j}, x_{2j}\}; j \in N\}$, whose closure is contained in a closed subset $F \cap (X_1 \times C'_2)$, has a cluster point in $(V_1 \times V_2) \cap (X_1 \times C_2)$. Hence $(x_1, x_2) \in F$ by the closedness of $F \cap (X_1 \times C'_2)$. Therefore $X_1 \times X_2$ has the weak topology with respect to C. (b): Since every subset K of $X \times Y$ is contained in $X \times \overline{P_Y(K)}$, where P_Y is the projection of $X \times Y$ onto Y, and $\overline{P_Y(K)}$ is closed countably compact for every countably compact subset K of $X \times Y$ by Lemma 1.2, $X \times Y$ has the weak topology with respect to C.

From T. Chiba [4; Theorem 4], Lemma 1.1, and Lemma 1.3, we have

Proposition 1.4. Let $f_i: X_i \rightarrow Y_i$ (i=1,2) be quotient maps and X_1 be a sequential space. If (a) Y_1 and Y_2 are q-spaces, or (b) $Y_1 \times Y_2$ is a quasi-k-space and Y_2 is either normal or countably paracompact, then $f_1 \times f_2$ is quotient.

Remark. Lemma 1.1 remains true if we replace the words "sequential" and "closed countably compact" by "a k-space" and "compact" respectively, which leads to E. Michael [10; Theorem 1.5].

2. Proof of theorems.

Theorem 2.1. The following properties of a space X are equivalent.

(a) X is a locally countably compact space.

(b) $X \times Y$ is a quasi-k-space for every sequential space Y.

(c) $X \times Y$ is a quasi-k-space for every paracompact sequential space Y.

Proof. (a) \rightarrow (b): Let Y_0 be the topological sum of the family {C; C is compact metric in Y}, and f be the quotient map of Y_0 onto Y. Then $f \times i_X$ is quotient by E. Michael [9; Theorem 4.1 (a) \rightarrow (b)]. Since $Y_0 \times X$ is a quasi-k-space and quotients of quasi-k-spaces are quasi-k-spaces, $X \times Y$ is a quasi-k-space.

(b) \rightarrow (c): Obvious.

(c) \rightarrow (a): Assume that X is not countably compact.

From E. Michael [9; Theorem 4.1 (c) \rightarrow (a)], there exists a closed map g of a metric space onto a space Y such that $i_x \times g$ is not quotient. Since Y is a paracompact sequential space, $X \times Y$ is a quasi-k-space by the hypothesis. From Lemma 1.1 and the proof of Lemma 1.3 (b), $i_x \times g$ is quotient, which is impossible.

Theorem 2.2. Let X and Y be sequential spaces. Then $X \times Y$ is sequential if and only if it is a quasi-k-space.

Proof. The "only if" part is obvious.

"if": Let X_0 and Y_0 be the topological sums of the families $\{C; C$ is compact metric in $X\}$ and $\{C'; C' \text{ is compact metric in } Y\}$ respectively, and let $f: X_0 \to X, g: Y_0 \to Y$ be quotient. Since $X \times Y$ is a quasik-space and Y is sequential, from Lemma 1.1 and Lemma 1.3 (b), $f \times g$ is quotient. Since $X_0 \times Y_0$ is metric, $X \times Y$ is sequential.

From T. Chiba [4; Theorem 4] and J. Nagata [12; Corollary to Theorem 1], and Theorem 2.2, we have

Corollary 2.3. If X and Y are sequential q-spaces, then $X \times Y$ is a sequential q-space.

From Theorem 2.1 and Theorem 2.2, we have

1076

Corollary 2.4 (T. K. Boehme [3]). If X is a locally countably compact, sequential space and Y is a sequential space, then $X \times Y$ is a sequential space.

According to P. Bacon [2], a space X is called isocompact if every closed countably compact subset of X is compact. Paracompact spaces, σ -spaces, and developable spaces are all isocompact spaces.

Theorem 2.5. Let X be either normal or countably paracompact. If (a) X is isocompact and Y is a k-space, or (b) X is a k-space and Y is sequential, then $X \times Y$ is a k-space if and only if it is a quasi-k-space.

Proof. Let $X \times Y$ be a quasi-k-spaces. (a) $X \times Y$ has the weak topology with respect to $\{\overline{P_X(K)} \times Y; K \text{ is countably compact in } X \times Y\}$, where P_X is the projection of $X \times Y$ onto X, and $\overline{P_X(K)}$ is compact for every countably compact subset K of $X \times Y$ by Lemma 1.2 (b). From Remark to Proposition 1.4, $X \times Y$ is a k-space by the same way as in the proof of Theorem 2.2. (b) Similarly, from Proposition 1.4 (b), $X \times Y$ is a k-space.

Remark. Lemma 1.3, Proposition 1.4, and Theorem 2.5 remain true if we replace the words "normal" and "countably paracompact" by "locally normal" and "locally countably paracompact" respectively.

According to A. Arhangel'skii [1], a space X is called of pointwise countable type if each point of X is countained in a compact subset having a countable local basis.

Theorem 2.6. Let X be a k-space and a q-space. If Y is either a space of pointwise countable type or a sequential q-space, then $X \times Y$ is a k-space and a q-space.

Proof. From T. Chiba [4; Theorem 4], $X \times Y$ is a q-space. If Y is of pointwise countable type, put $X=X_1$ an $Y=X_2$, then the subsets C_2 , C'_2 in the proof of Lemma 1.3 (a) are compact. Hence $X \times Y$ has the weak topology with respect to $\{X \times C; C \text{ is compact in } Y\}$. Therefore, by the same way as in the proof of Theorem 2.5 (a), $X \times Y$ is a k-space. Similarly, if Y is a sequential q-space, $X \times Y$ is a k-space by Proposition 1.4 (a).

3. In this section, we consider the product space of uncountably many spaces.

From the fact that every subset K of $\prod_{\alpha \in A} X_{\alpha}$ is contained in $\prod_{\alpha \in A} \overline{P_{\alpha}(K)}$, where P_{α} is the projection of $\prod_{\alpha \in A} X_{\alpha}$ onto X_{α} , and Lemma 1.2, we have

Theorem 3.1. Let X_{α} be an isocompact space which is normal, or countably paracompact, or sequential for each $\alpha \in A$. Then $\prod_{\alpha \in A} X_{\alpha}$ is isocompact, and it is a k-space if and only if it is a quasi-k-space.

Lemma 3.2. If $\prod_{\alpha \in A} X_{\alpha}$ is a q-space, then all but a countable number of spaces X_{α} must be countably compact.

Y. TANAKA

Proof. Assume that there exists an uncountable subset A' of A such that $X_{\alpha'}$ is not countably compact for each $\alpha' \in A'$. Then $X_{\alpha'}$ contains a copy of N, say $N_{\alpha'}$, as a closed subset for each $\alpha' \in A'$. Since $\prod_{\alpha' \in A'} N_{\alpha'}$ is closed in $\prod_{\alpha \in A} X_{\alpha}$, it is a q-space. Then there exists a q-sequence $\mathcal{U}=\{U_i; i \in N\}$ of a point of $\prod_{\alpha' \in A'} N_{\alpha'}$, such that each U_i is an open basic subset of $\prod_{\alpha' \in A'} N_{\alpha'}$. Put $K = \bigcap_{i=1}^{\infty} U_i, K$ is countably compact and for any oped subset 0 of $\prod_{\alpha' \in A'} N_{\alpha'}$ containing K we can find U_i satisfying $K \subset U_i \subset 0$. Let $B = \{\alpha'; \alpha' \in A', P_{\alpha'}(U) \neq N_{\alpha'}$ for some U in $\mathcal{U}\}$, where $P_{\alpha'}$ is the projection of $\prod_{\alpha' \in A'} N_{\alpha'}$ onto $N_{\alpha'}$. Then there exists an element α'_0 in A'-B. Since $P_{\alpha_0}(K)$ is compact, $P_{\alpha_0}(K) \neq N_{\alpha_0}$. Put $0 = P_{\alpha_0}(K) \times \prod_{\alpha' \neq \alpha_0} N_{\alpha'}$, 0 is an open subset of $\prod_{\alpha \in A'} N'_{\alpha}$ containing K. But $U_i \not\subset 0$ for each $i \in N$, which is impossible.

Theorem 3.3. Let X_{α} be an isocompact space for each $\alpha \in A$. Then $\prod_{\alpha \in A} X_{\alpha}$ is a q-space if and only if it is of pointwise countable type. Especially, if each X_{α} is a paracompact M-space, then the following properties of the product space $\prod_{\alpha \in A} X_{\alpha}$ are equivalent.

(a) a q-space., (b) an M-space., (c) a paracompact space.

Proof. Since spaces of pointwise countable type are q-spaces, the "if" part is proved. The "only if" part follows from the fact that isocompact q-spaces are of pointwise countable type, and A. Arhangel'skii [1; Theorem 3.9'], and Lemma 3.2.

Since *M*-spaces are *q*-spaces, from K. Morita [11; Theorem 6.4] and Lemma 3.2, (a) \leftrightarrow (b) and (b) \rightarrow (c) are proved. (c) \rightarrow (b) follows from A. H. Stone [14; Corollary to Theorem 4] and K. Morita [11; Theorem 6.4].

References

- A. Arhangel'skii: Bicompact sets and the topology of spaces. Translation of the Moskow Math. Soc., 1-62 (1965).
- [2] P. Bacon: The compactness of countably compact spaces. Pacific. J. Math., 32, 587-592 (1970).
- [3] T. K. Boehme: Linear s-spaces. Proc. Symp. Convergence Structures. U. of Oklahoma (1965).
- [4] T. Chiba: On q-spaces. Proc. Japan Acad., 45, 453-456 (1969).
- [5] J. Dugundji: Topology. Allyn and Bacon Inc. Boston (1967).
- [6] S. P. Franklin: Spaces in which sequences suffice. Fund. Math., 57, 102-114 (1967).
- [7] F. Ishikawa: On countably paracompact spaces. Proc. Japan Acad., 31, 686-687 (1955).
- [8] E. Michael: A note on closed maps and compact sets. Israel. J. Math., 2, 173-176 (1964).
- [9] ——: Local compactness and cartesian products of quotient maps and k-spaces. Ann. Inst. Fourier, Grenoble., 18 (2), 281-286 (1968).
- [10] —: Bi-quotient maps and cartesian products of quotient maps. Ann. Inst. Fourier, Grenoble., 18 (2), 287–302 (1968).
- [11] K. Morita: Products of normal spaces with metric spaces. Math. Annalen., 154, 365-382 (1964).

No. 10]

- [12] J. Nagata: Quotient and bi-quotient spaces of M-spaces. Proc. Japan Acad., 45, 25-29 (1969).
- [13] J. Novák: On the cartesian product of two compact spaces. Fund. Math., 40, 106-112 (1953).
- [14] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977-982 (1948).
- [15] J. H. C. Whitehead: A note on a theorem of Borsuk. Bull Amer. Math. Soc., 54, 1125-1132 (1958).