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54. Functional Dimension of Tensor Product

By Shigeo TAKENAKA

(Comm. by Kinjir6 KUNUGI, M. Z. .., Feb. 12, 1971)

1. Introduction. The purpose of this paper is to give a proof
to the fact that the functional dimension of the tensor product of
two topological vetcor spaces is equal to the sum of their functional
dimensions.

A. N. Kolmogorov [l] showed that the asymptotic behavior of
number of elements of a minimal e-net of a totally bounded subset in
a topological vector space plays the role of dimension of the space. He
[2] also introduced the notions of the approximative dimension and the
functional dimension of topological vector spaces. The functional
dimension is not trivial for a-Hilbert nuclear spaces as is shown in
I. M. Gel’land’s book [3].

In this paper we modify the definition of the functional dimension
de of a-Hilbert nuclear spaces to the number which is equal to the
functional dimension (defined by Kolmogorov) minus 1, and we prove
the following theorem"

Theorem. Let E1 and E2 be a-Hilbert nuclear spaces. Then
df(E(R)Ef)-- df(E1) + d(EO.

The author of the present paper expresses his thanks to Professors
H. Yoshizawa and N. Tatsuuma for their discussions on this problem.

2. Notations. We follow notations used by Kolmogorov [4].
Let E be a topological vector space, K be a totally bounded subset of
E and S be its convex absorbing and barrelled neighbourhood of 0 in
E. Then we call e-entropy H,(S, K) of K (with respect to S) the infimum
of logarithm of number of e-nets of K (with respect to S); that is,

H,(S,K)--inf {log ( N) NE, Vk e K, n e N, k e n+S}.
We use the following notations for infinitesimals" f(x) g(x) means

lira g(x)/f(x) < + f(x) g(x) means f(x) g(x) and f(x) g(x) f(x)
t2(g(x)) means lira (f(x)) / g(x)-- O.

In this paper the notation log stands for the logarithm with respect
to the base 2.

3. Theorem of Mit]ragin and a-Hilbert nuclear spaces. We
define as follows" The set 6" is called {a}-ellipsoid when ={() e (/z);
,nlanlZ<=l}, where {a} is a monotonous increasing series of such
numbers a that a>_ 1 and lim a--c the function re(t) is defined by

the formula re(t)= sup {n; a<= t} let S be the unit ball in (l).
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Then the following theorem holds.
Theorem A (Mityagin [5]). If is an {a}-ellipsoid, then

Now let

?’() lim log H(S, )) 1,
-0

log log

then immediately from Theorem A we
Proposifion 1. For suciently small positive s,

log(m())
r()

1
--1.

log log log log-

Theorem B (Gel’land [3]). Let E be a a-Hilbert space and
U {x e E p(x) 1}, where p are its countable norms, then E is
nuclear if and only if

sup in lim log H,(U, U) 0.
,-0

log 1

Following Kolmogorov [4] we define functional dimension d(E) of
a Frecht space E as follows"

d(E)-sup inf lim log H,(U, V) 1,
,-0

log log 1

where U, V are convex barrelled and absorbing neighbourhood of 0 o E.
From Theorem B, we can consider that this unctional dimension

plays the role of dimensionality of a-Hilbert spaces. Clearly, the tensor
product of two a-Hilbert (nuclear) spaces is also a a-Hilbert (nuclear)
space. In the following sections we shall show that the tensor product
of two a-Hilbert spaces with finite functional dimension has also finite
functional dimension.

4. The function re(t) of an ellipsoid with finite . Let E be a
a-Hilbert nuclear space and p be its norms, E be the completion of E
with respect to p. In E, U={p(x)gl} is an ellipsoid
E has finite unctional dimension, for arbitrary n there exists m such
that

lim log H,(U, U) .
,-0

log log

We shall characterize an ellipsoid of this type by the growth of
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Proposition 2. Let be an ellipsoid and m(t) be the correspond-
ing function defined in 3. If y(C)= fl, then

Proof. By Proposition 1, we have

Now put, for positive

1+ log 1

then dt

Therefore q=0. And we have

Q.E.D.

5. Tensor product of two ellipsoids and its m(t). Let and

z be Hilbert spaces, and ={,la$lZl} and ’z={ bilz__<l} be
ellipsoids in and z, respectively. Then --(R)’z is also an (Cn}-
ellipsoid in (R)z, where c--ab. Let m(t) and m(t) be the func-
tions corresponding to and ’ respectively, and suppose

m(t) (log t)"(1 + t0(log t))
and m(t) (log t)(1 + O(log t)).

Then dm(t) and dmz(t) At are numbers of axes whose lengths
d dt

fall between t and t+ At.
Now we estimate re(t) of . We have

tl-i’-)/m(x)m(y)dxdym(t);tl+/ I(1
where 0__<z/<< t;

m(t)I+

(log (t + A))(log x)"-(1 + 9(log t))
X

(log (t+ A))"+(1 + O(log t))
(log t)"+(1 + O(log t)).

And we have

re(t) t))
2 x

+)lx

m(x)m(y)dxdy,

a(log x)"-(1 + 9(log x))(log (t + A)- log x) dx
X

dx

.(log (t-- zl))"/(1 + O(log t))
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(log t)"+(l / f2(log t)). Q.E.D.
Thus we have
Proposition 3. m(t) m(t) mz(t).
6. Functional dimension of tensor product of nuclear spaces.

Theorem. Let E and F be a-Hilbert nuclear spaces. Then
dx(E(R)F)- dx(E) + dx(F).

Proof. Let {U)and {V} be undamental neighbourhoods of E and
F, respectively. Let

-lim
log H,(U, U) 1,

,0
log log 1

and ?-lim
log H(V, V) 1,

1,-0

log log

then sup inf F-d](E) and sup inf -dx(F). Put

7% --lim log H(U(R)V, U(R)V,) --I,
-0 log log _1

then sup inf7-dI(E(R)F). By Proposition 3, 7f-- 7# + 7f. Hence we get

dy(E@F)- sup inf 7 =sup inf 7+ sup inf fm, n, k

=dx(E)+dx(F). Q.E.D.
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