219. On Ergodic and Abelian Automorphism Groups of von Neumann Algebras

By Hisashi Choda

Department of Mathematics, Osaka Kyoiku University (Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1971)

Recently, in [5] Tam proved that any ergodic and abelian automorphism group of an abelian von Neumann algebra is freely acting.

In this paper, we shall give a generalization of Tam's theorem, using the notion of the generalized free action due to Kallman [3]. And we shall generalize Kallman's theorem that all the powers of an ergodic automorphism of a II_1 -factor are outer [3].

1. Let \mathcal{A} be a von Neumann algebra acting on a Hilbert space \mathfrak{F} . In this paper we shall write briefly a *-automorphism of \mathcal{A} as an automorphism of \mathcal{A} .

Definition A. Let G be a group of automorphisms of a von Neumann algebra \mathcal{A} . Then G is called to be *ergodic* on \mathcal{A} if the only A in \mathcal{A} which satisfies

(*) g(A)=A (for all $g \in G$) is scalar. An automorphism g on \mathcal{A} is called to be *ergodic* on \mathcal{A} if the only A in \mathcal{A} which satisfies the condition (*) is scalar.

Kallman [3] has generalized the von Neumann free action for an abelian von Neumann algebra as follows:

Definition B (Kallman). An automorphism g on a von Neumann algebra \mathcal{A} is called to be *freely acting* on \mathcal{A} if the only A in \mathcal{A} which satisfies

(**) AB = g(B)A for all $B \in \mathcal{A}$ is A = 0.

The condition (**) in the Definition B is used by Nakamura and Takeda and plays an important role in the theory of the crossed product [4].

Under the Definition B, Kallman showed that any automorphism of a von Neumann algebra is decomposed into freely acting part and inner part. Using this theorem, we have the following:

Lemma 1. Let \mathcal{A} be a von Neumann algebra, G an ergodic group of automorphisms of \mathcal{A} and α an automorphism of \mathcal{A} such that

 $\alpha g = g \alpha$ for every $g \in G$.

Then the automorphism α is freely acting or inner.

Proof. By the Kallman theorem, there exist a central projection P and a unitary operator U in \mathcal{A} such that

Groups of von Neumann Algebras

$$\alpha(AP) = U^*APU \quad \text{for any } A \text{ in } \mathcal{A},$$

and that α is freely acting on \mathcal{A}_{I-P} .

For any element g of G,

 $\alpha(g(P)) = g(\alpha(P)) = g(P)$

 \mathbf{and}

Suppl.]

$$\alpha(g(P)B) = g(\alpha(Pg^{-1}(B)))$$

= $g(U^*g^{-1}(B)PU)$
= $g(U)^*Bg(P)g(U)$ for any B in \mathcal{A} .

Then, by the definition of P [3, Proof of Theorem 1], we have

$$g(P) \leq P$$
 for any $g \in G$.

On the other hand, since G is ergodic,

 $\sup \{g(P); g \in G\} = 0$ or I.

Therefore P=0 or I, that is, α is inner or freely acting.

By Lemma 1, we have the following generalized Tom's theorem:

Theorem 2. Let \mathcal{A} be a von Neumann algebra and G an ergodic and abelian group of outer automorphisms of \mathcal{A} . Then G is freely acting on \mathcal{A} .

Proof. For any element $g \in G$ ($g \neq e$, unit of G), we have

$$gh = hg$$
 for any $h \in G$.

Then, by Lemma 1, g is freely acting or inner.

Therefore, since G is a group of outer automorphisms of \mathcal{A} , g is freely acting on \mathcal{A} . That is, G is freely acting.

2. The following lemma may be known in the specialist.

Lemma 3. Let \mathcal{A} be a continuous von Neumann algebra acting on § and \mathcal{B} a maximal abelian subalgebra of \mathcal{A} . Then for any nonzero projection P in \mathcal{B} there exist two orthogonal nonzero projections Qand R in \mathcal{B} such that

$$P = Q + R$$
.

Proof. It is sufficient to show that \mathcal{B} does not have any minimal projection in \mathcal{B} . If there is a minimal projection P in \mathcal{B} , then by the minimality of P, the reduced von Neumann algebra \mathcal{B}_P is the algebra $\mathcal{C}_{P(\mathfrak{Y})}$ of scalar multiples of the identity on $P(\mathfrak{Y})$. On the other hand, since \mathcal{B} is a maximal abelian subalgebra of \mathcal{A} , \mathcal{B}_P is a maximal abelian subalgebra of \mathcal{A}_P [1, p. 13 and p. 18]. Then \mathcal{B}_P equals to \mathcal{A}_P by the following equality;

$$\mathcal{A}_P = \mathcal{A}_P \cap \mathcal{C}_P' = \mathcal{A}_P \cap \mathcal{B}_P' = \mathcal{B}_P.$$

This contradicts that \mathcal{A}_P is continuous [1, p. 125].

It is known that all the powers of an ergodic measure preserving automorphism on a non-atomic probability measure space are freely acting [2]. As an analogous statement for II₁-factor, Kallman proved in [3] that all the powers of an ergodic automorphism of II₁-factor are outer. We have a generalization of this theorem as follows:

983

H. CHODA

Theorem 4. Let \mathcal{A} be a continuous von Neumann algebra acting on a Hilbert space \mathfrak{H} and g an ergodic automorphism of \mathcal{A} . Then $g^n (n = \pm 1, \pm 2, \cdots)$ is freely acting on \mathcal{A} .

Proof. If g^n does not freely acting for some $n \ (=\pm 1, \pm 2, \cdots)$, then by Lemma 1 g^n is inner. We may assume that n > 0. Then there exists a unitary operator U in \mathcal{A} such that

 $g^{n}(A) = U^{*}AU$ for all A in \mathcal{A} . Let \mathcal{B} be a maximal abelian subalgebra of \mathcal{A} containing U. Then we have

 $g^n(B) = B$ for all B in \mathcal{B} .

Let, for any nonzero projection Q in \mathcal{B} ,

$$R = Q + g(Q) + \cdots + g^{n-1}(Q).$$

Then g(R) = R, so R is some scalar multiple of the identity, say $R = \lambda I$. Since Q is a nonzero projection, we have $\lambda \ge 1$.

Take a unit vector x in \mathcal{H} . For a natural number k with $k > n^2$, there exist k mutually orthogonal projections Q_i in \mathcal{B} $(i=1, 2, \dots, k)$ with $\sum_{i=1}^{k} Q_i = I$, by Lemma 3. By the equality;

$$1 = ||Ix||^2 = \sum_{i=1}^{k} ||Q_ix||^2,$$

there exists i such as

$$\|Q_i x\| < 1/n.$$

If $||g(Q_i)x|| \ge 1/n$, we choose again k mutually orthogonal nonzero projections R_j $(j=1, 2, \dots, k)$ in \mathcal{B} with $Q_i = \sum_{j=1}^k R_j$, by Lemma 3. As such as Q_i ,

$$1 \ge \|g(Q_i)x\|^2 = \sum_{j=1}^k \|g(R_j)\|^2,$$

then there exists a nonzero projection R_j in \mathcal{B} with $||g(R_j)x|| < 1/n$. Then we have a nonzero projection Q in \mathcal{B} such that

||Qx|| < 1/n

and

$$\|g(Q)x\| < 1/n.$$

Going on this method, we have a nonzero projection Q in \mathcal{B} such as for any k $(1 \leq k \leq n)$,

$$\|g^{k}(Q)x\| < 1/n.$$

Since, for this nonzero projection Q in \mathcal{B} ,

 $\lambda x = Rx = Qx + g(Q)x + \cdots + g^{n-1}(Q)x,$

 $|\lambda| < 1$ which contradicts $\lambda \geq 1$.

By the proof of Theorem 4, we can see that Theorem 4 is valid for a nonatomic abelian von Neumann algebra.

The author wishes to express his hearty thanks to Dr. P. K. Tam for the opportunity to see a prepublication copy of [5].

References

- [1] J. Dixmier: Les algèbres d'opérateurs dans l'espace Hilbertien. Gauthier-Villars, Paris (1957).
- [2] H. A. Dye: On groups of measure preserving transformations. I. Amer. J. Math., 81, 119-159 (1959).
- [3] R. R. Kallman: A Decomposition Theorem of Automorphisms of von Neumann Algebras. Proceedings of a Symposium on Functional Analysis (edited by C. O. Wilde), Academic Press, New York, 33-35 (1970).
- [4] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras. Proc. Japan Acad., 34, 489-494 (1958).
- [5] P. K. Tam: On an ergodic abelian *M*-group. Proc. Japan Acad., 47, 456-457 (1971).