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1. Introduction and statement of the result. This paper is con-
cerned with the perturbation of linear contraction semigroups on
Banach spaces. Our result gives a partial extension of a perturbation
theorem for such semigroups obtained by Nelson [5] and Gustafson [1].

A linear operator A (with domain D(A) and range R(A)) in an
arbitrary Banach space X is said to be accretive if

(A) (A + )u [ ][u[[ for every u e D(A) and >0.
This implies that (A + $)- exists and I(A + $)-v I=<- ][vl[, v e R(A + ),
for $0. It can be shown that (A +)-1 has domain X either for every
>0 or for no > 0; in the former case we say that A is m-accretive.

Also, (A) is equivalent to the following condition"

(A’) For every u e D(A) there is f e F(u) such that
Re (Au, f)> O,

where F denotes the duality mapping" F(u) {f e X* (u, f)-II ull
f 2} (cf. Kato [3] in which the term "monotonic" was used instead of

"accretive"). Note that the inequality is not required to hold for every

f e F(u). But if X is reflexive and A is m-accretive, then the inequal-
ity holds for every f e F(u). This is a consequence of the following
facts (cf. Lumer-Phillips [4], Remark I to Theorem 3.1)"

1) --A is the (infinitesimal) generator of a linear contraction
semigroup on an arbitrary Banach space if and only if A is m-accretive
and densely defined;

2) If X is reflexive, then m-accretive operators in X are neces-
sarily densely defined (cf. Kato [2], or Yosida [9], p. 218).
In fact, being the generator of a linear contraction semigroup is inde-
pendent of the multiplicity of duality mapping.

On the (relatively bounded) perturbation of linear contraction
semigroups, we know the following result due to Nelson and Gustafson
(el. [1]).

Theorem 1. Let A and B be linear operators in an arbitrary
Banach space X such that

IIBul]_allull+bllAull, a>=O, 0<b<l, ueD(A)D(B).
If --A is the generator of a linear contraction semigroup and if B is
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accretive, then --(A + B) defined on D(A) is also the generator of such
a semigroup.

The purpose o the present paper is to prove the ollowing

Theorem 2. Let A and B be linear operators in a reflexive Banach
space X such that
(1) [[Bull<allulI+llAull, a=O, ueD(A)D(B).
If A is m-accretive and B is accretive, then the closure of A +B defined
on D(A) is also m-accretive.

Theorem 2 is a generalization of a perturbation theorem proved
recently by Wrist [8]. The proof of Theorem 2 is based on Theorem 1.

2. Proof of Theorem 2. Since X is reflexive and A is m-accre-
tive, we see that A +B is accretive and densely defined. Hence, A +B
is closable (cf. [4], Lemma 3.3). Since the closure C of A +B is also
accretive, it suffices to show that the range R(C+ 1) of C+ 1 is equal to
the whole space X.

Since IItBull<=allull+ tllAull for 0tl and u e D(A)D(B), it fol-
lows rom Theorem 1 that A + tB is m-accretive or t e [0, 1). This
means that (A +tB+ 1)D(A)--X for t e [0, 1), that is, or any w e X
there exists a amily {u(t)e D(A);O<=t1} such that
( 2 ) w- (A + tB+ 1)u(t), t e [0, 1).
To obtain R(C+ 1)-X, we shall show that w belongs to R(C+ 1). Set-
ring v(t)=(A +B+ 1)u(t), we have
( 3 ) v(t) w (1-- t)Bu(t), t e [0, 1).
Also, we see from (2) that
( 4 ) u(t)ll<=[l(n + tB + 1)-111 IIWII--<] Wll t e [0, 1).
It then follows from (3), (1) and (4) that

v(t)ll <= v(t) w + w II- (1-- t)ll Bu(t)ll + w
<=a ]lu()ll+llAu(t)l]-t

(a+ 1)11 w + I1(A + tB)u(t)ll
=< (a + 1)11 w + II(A + tB + 1)u(t)ll +

Thus, the amily (v(t) X;0gt 1} is bounded. Since X is locally se-
quentially weakly compact (the Eberlein-Shmulyan theorem), we can
find a sequence {t}[0,1) and an element e X such that t-
and (v(t)}R(C+l) converges weakly to v as n-c. But since
II(C+l)-vll<=llvl, v R(C+I), by condition (A), it ollows rom the
closedness o2 C that R(C+ 1) is a closed linear subspace o2 X. Thus,
R(C+ 1) is weakly closed and we have v R(C+ 1). Consequently, to
see that w e R(C+ 1), it suffices to show that v=w.

Now let B* be the adjoint operator of B. Then we have by (3) that
or g e D(B*),
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](V ), g)]-- lira I(v(t) w, g) l= lim I((1-- tn)Bu(tn), g)

=lim (1--.tn)l (u(tn), B’g)]

_-<llwll IIB*gll lim (1-t)-0.

Since X is reflexive and B is closable, B* is densely defined. Thus we
obtain (v-w, g)=0 for any g e X* and hence W=Vl e R(C+I). This
completes the proof of Theorem 2.

3. Remarks.
Remark 1. Let A and B be linear operators in a reflexive Banach

space X such that IBu[a’ [ul+[Aul, a’>0, u e D(A)D(B). If A
is m-accretive and B is accretive, then the closure of A +B defined on
D(A) is also m-accretive. In fact, since [Bu]g(a’[{u[l+{Au]{)1/

a’ u][ + Au]], we can apply the result obtained above. When X is
a Hilbert space, this fact is noted in [6].

Remark 2. Theorem 2 may be false if X is not reflexive. In fact,
Trotter [7] has given an example of two densely defined m-accretive
operators A, B in X=C[--, ] such that [[Bu[lAu[ for u eD(A)
=D(B), but the closure of A +B is not m-accretive.

Remark added in proofs. After this paper was submitted for
publication, the writer received a preprint of [10].
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