171. On the Regularity of Domains for the First Boundary Value Problem for Semi-linear Parabolic Partial Differential Equations

By Haruo Murakami
Kobe University
(Comm. by Kinjirô Kunugr, m. J. A., Dec. 12, 1972)

In this short note, we shall prove that a domain $D \subset R^{n+1}$ is regular for the first boundary value problem ($=$ the Dirichlet problem or the initial-boundary value problem) for the semi-linear parabolic partial differential equation:

$$
\begin{equation*}
\boldsymbol{P} u \equiv \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}-\frac{\partial u}{\partial t}=f\left(x, t, u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right), \tag{E}
\end{equation*}
$$

if it is regular for $\boldsymbol{P} u \leqq-1$.
It is well known that even for the simplest equation of this kind, namely, for the heat equation

$$
\begin{equation*}
\nabla u \equiv \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}-\frac{\partial u}{\partial t}=0, \tag{H}
\end{equation*}
$$

there may not be a solution u for the first boundary value problem if we require u to take values prescribed on the (whole) topological boundary of the domain. For example, consider the first boundary value problem for (H) for $n=1$ for the domain $\{(x, t) ; 0<x<1,0<t<1\}$. Values of the solution $u(x, t)$ on the upper boundary $\{(x, t) ; 0 \leqq x \leqq 1$, $t=1\}$ are determined by the values of u given on the side boundary $\{(x, t) ; x=0$ or $1,0 \leqq t \leqq 1\}$ and the lower boundary $\{(x, t) ; 0 \leqq x \leqq 1, t=0\}$.

Prompted by this example, let us split the topological boundary ∂D of a domain D bounded by a finite number of sufficiently smooth hypersurfaces into three parts, namely, i) Side boundary $\partial_{s} D$: closure of the part where the outer normal is not parallel to the time axis, ii) Lower boundary $\partial_{l} D$: closure of the part where the outer normal is in the $-t$ direction, and iii) Upper boundary $\partial_{u} D$: interior of the part where the outer normal is in $+t$ direction. We shall call the set $\partial_{p} D$ $\equiv \partial_{l} D \cup \partial_{s} D$ the parabolic boundary of D, which is the set where we should give the boundary data. In other words, a point of $\partial_{u} D$ must be considered parabolically an interior point of D. So, the question to be asked will be: is there always a solution of $\nabla u=0$ (or more generally, $\boldsymbol{P} u=f$) in D admitting a continuous boundary value prescribed on $\partial_{p} D$?

Another example shows that there is not always a solution. Let $C(P, r)$ be the parabolic circle (sphere) for the heat equation (H) for
$n=1$ with centre $P=(x, t)$ and radius r. By this we mean that $C(P, r)$ is the curve expressed by a parameter θ as follows:

$$
\left\{\begin{array}{l}
\xi=x+\sqrt{2} r \sin \theta \sqrt{\log \operatorname{cosec}^{2} \theta} \\
\tau=t-r^{2} \sin ^{2} \theta,-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}
\end{array}\right.
$$

Note that the curve $C(P, r)$ is the level curve $E(x, t ; \xi, \tau)=1 / r$ of the elementary solution

$$
E(x, t ; \xi, \tau)= \begin{cases}\frac{1}{\sqrt{t-\tau}} \exp \left(-\frac{(x-\xi)^{2}}{4(t-\tau)}\right) & \tau<t \\ 0 & \tau \geqq t\end{cases}
$$

If u satisfies the heat equation, we see by Green's formula that

$$
\int_{-\pi / 2}^{\pi / 2} u(\xi, \tau) \cos \theta \sqrt{\log \operatorname{cosec}^{2} \theta} d \theta=u(x, t)
$$

This mean value theorem shows that the top point P of $C(P, r)$ is an irregular point for the domain surrounded by $C(P, r)$, for if we give continuous boundary data β on $C(P, r)$ that vanishes except in a small neighbourhood of P, where we assume $\beta>0$ with $\beta(P)=1$, then the solution u admitting β on $C(P, r)$, if it did exist, must satisfy

$$
1=\beta(P)=u(x, t)=\int_{-\pi / 2}^{\pi / 2} \beta(\xi, \tau) \cos \theta \sqrt{\log \operatorname{cosec}^{2} \theta} d \theta<1 .
$$

Recently, E. G. Effros and J. L. Kazdan [1] proved that a boundary point where the outer normal is in the $+t$ direction is regular for the heat equation if this point is parabolically touchable. They defined the parabolical touchability as follows. If $u(x, t)$ is a solution of the

heat equation (H) then clearly $u\left(2^{\alpha} x, 4^{\alpha} t\right)$ is also a solution. By letting $\tau(\alpha)(x, t)=\left(2^{\alpha} x, 4^{\alpha} t\right)$, and $T(G)=\{\tau(\alpha)(x,-1) ;(x,-1) \in G,-\infty<\alpha<\infty\}$ $\cup\{(0,0)\}$ where G is a closed n-sphere in the hyperplane $\left\{(x, t) ; x \in R^{n}\right.$, $t=-1\}$, they defined that a point Q of $\partial_{p} D$ is parabolically touchable if, upon translating D so that $Q=(0,0)$, there is a tusk $T(G)$ with $T(G)$ $\cap \bar{D}=\{(0,0)\}$. This tusk plays a role analogous to that of Poincaré's cone for the Laplace equation.

Thus, by the following theorem, which asserts that a domain is regular for (E) if it is regular for $P u \leqq-1$, we see that a domain D is regular for

$$
\nabla u=f\left(x, t, u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right),
$$

if each point of the parabolic boundary $\partial_{p} D=\partial_{l} D \cup \partial_{s} D$ of D is parabolically touchable.

In the sequel, we use the following notations. For a function $f(x)$ defined on a set $A, f^{*}(y)$ for $y \in \bar{A}$ denotes $\lim _{x \rightarrow y} \sup _{x \in D} f(x)$ and $f_{*}(y)$ denotes $\lim _{x \rightarrow y} \inf _{x \in D} f(x)$. We denote by $\mathcal{K}(D)$ the set of functions defined on a domain $D \subset R^{n+1}$ which are twice continuously differentiable in x and once continuously differentiable in t.

Theorem. We consider the equation

$$
\begin{equation*}
\boldsymbol{P} u \equiv \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}-\frac{\partial u}{\partial t}=f\left(x, t, u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right), \tag{E}
\end{equation*}
$$

where $\left\{a_{i j}(x, t)\right\}$, each $a_{i j}(x, t)$ being assumed to be bounded on a bounded domain $D \subset R^{n+1}$, is symmetric and positive definite, and f is a function satisfying the following condition: for any $M>0$ there exist B and Γ such that

$$
\left|f\left(x, t, u, p_{1}, \cdots, p_{n}\right)\right| \leqq B \sum_{i, j=1}^{n} a_{i j}(x, t) p_{i} p_{j}+\Gamma
$$

for $P=(x, t) \in D,|u| \leqq M, p=\left(p_{1}, \cdots, p_{n}\right) \in R^{n}$. Let $P_{v}=\left(x_{0}, t_{0}\right)$ be a point of $\partial_{p} D$. Assume that there exists a function $\psi(x, t) \in \mathcal{K}(D)$ such that $\psi_{*}(P) \geqq 0$ for $P \in \partial_{p} D, \lim _{D \ni P \rightarrow P_{0}} \psi(P)=0$, and $\boldsymbol{P} \psi \leqq-1$ on $D^{1)}$. Let $\beta(x, t)$ be a bounded function on $\partial_{p} D$. Then, for any $\varepsilon>0, K<0$ and $L>0$, there exist a neighbourhood $V=V(\beta, \varepsilon, K, L)$ and barrier functions $\bar{\omega}(x, t), \underline{(}(x, t) \in \mathcal{K}(D \cap V)$ satisfying
(i) $\quad \bar{\omega}^{*}\left(P_{0}\right)<\beta^{*}\left(P_{0}\right)+\varepsilon, \quad \underline{\omega}_{*}\left(P_{0}\right)>\beta_{*}\left(P_{0}\right)-\varepsilon$,
(ii) $\quad \bar{\omega}_{*}(P)>\beta(P), \quad \omega_{*}(P)<\beta(P) \quad$ for $P \in \bar{V} \cap \partial_{p} D$,
(iii) $\quad \bar{\omega}_{*}(P)>L, \quad \omega^{*}(P)<K \quad$ for $P \in D \cap \partial V$,
(iv) $\left\{\begin{array}{l}\boldsymbol{P} \bar{\omega}(x, t)<f\left(x, t, \bar{\omega}(x, t), \frac{\partial \bar{\omega}}{\partial x_{1}}, \cdots, \frac{\partial \bar{\omega}}{\partial x_{n}}\right) \\ \boldsymbol{P}_{\omega}(x, t)>f\left(x, t, \underline{\omega}(x, t), \frac{\partial \underline{\omega}}{\partial x_{1}}, \cdots, \frac{\partial \underline{\omega}}{\partial x_{n}}\right) \quad \text { on } D .\end{array}\right.$

1) This assumption implies $\psi(x, t) \geqq 0$ on D. See [2], p. 533, [4], p. 12.

Proof. Since K, L are arbitrary constants, we may assume that $-K=L>\sup \left\{|\beta(x, t)| ;(x, t) \in \partial_{p} D\right\}$. Let $C=2 L=L-K$. Then by the assumption of the theorem, there exist $B=B(M)$ and $\Gamma=\Gamma(M)$ such that

$$
\left|f\left(x, t, u, p_{1}, \cdots, p_{n}\right)\right| \leqq B \sum a_{i j}(x, t) p_{i} p_{j}+\Gamma
$$

for $(x, t) \in D,|u| \leqq M,-\infty<p_{i}<\infty(i=1, \cdots, n)$. Since

$$
\beta^{*}\left(P_{0}\right)=\lim _{\partial_{p} D \ni P \rightarrow P_{0}} \beta(P), \quad \beta_{*}\left(P_{0}\right)=\liminf _{\partial_{p} D \ni P \rightarrow P_{0}} \beta(P),
$$

there exists a cylindrical neighbourhood $\left\{(x, t) ;\left|x-x_{0}\right|<\delta,\left|t-t_{0}\right|<\eta\right\}$ of P_{0} such that $\beta_{*}\left(P_{0}\right)-\varepsilon / 2<\beta(P)<\beta^{*}\left(P_{0}\right)+\varepsilon / 2$ for $P=(x, t) \in \partial_{p} D$ in this neighbourhood. Letting

$$
\phi(x)=\frac{1}{C_{1}}\left\{\exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right)-1\right\}
$$

we set

$$
\begin{aligned}
& \bar{\omega}(x, t)=\frac{1}{C_{1}} \log \left[C_{1}\{N \psi(x, t)+\phi(x)\}+1\right]+C_{2}\left|t-t_{0}\right|^{2}+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2}, \\
& \underline{\omega}(x, t)=\frac{-1}{C_{1}} \log \left[C_{1}\{N \psi(x, t)+\phi(x)\}+1\right]-C_{2}\left|t-t_{0}\right|^{2}+\beta_{*}\left(P_{0}\right)-\frac{\varepsilon}{2},
\end{aligned}
$$

where C_{1}, C_{2} and N are constants to be determined later.
Since $\lim _{D \ni P \rightarrow P_{0}} \psi(P)=0$ and $\lim _{D \ni P \rightarrow P_{0}} \phi(x)=0$, we have

$$
\lim _{D \ni P \rightarrow P_{0}} \bar{\omega}(P)=\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2},
$$

which shows that $\bar{\omega}(P)$ satisfies (i).
Let $U=\left\{(x, t) ;\left|x-x_{0}\right|<\delta,\left|t-t_{0}\right|<\eta\right\}$, and $S=\{(x, t) \in U \cap D ; N \psi(x, t)$ $\left.+\phi(x) \geqq\left(1 / C_{1}\right)\left(\exp C C_{1}-1\right)\right\}$. Then $P_{0}=\left(x_{0}, t_{0}\right)$ is not in S. Let V be the largest open neighbourhood of P_{0} in U such that $V \subset U-S$.

For $P=(x, t) \in \bar{V} \cap \partial_{p} D$ we have

$$
\begin{aligned}
\bar{\omega}_{*}(P) & =\frac{1}{C_{1}} \log \left[C_{1}\left\{N \psi_{*}(P)+\phi(x)\right\}+1\right]+C_{2}\left|t-t_{0}\right|^{2}+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2} \\
& \geqq \beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2}>\beta(P),
\end{aligned}
$$

which shows that $\bar{\omega}(P)$ satisfies (ii).
For (iii), let $P=(x, t) \in D \cap \partial V$. Note that if $\left|x-x_{0}\right| \geqq \delta$, then $\phi(x)$ $\geqq\left(1 / C_{1}\right)\left[\exp \left(C C_{1} \delta^{2} / \delta^{2}\right)-1\right]$. Hence V is in the cylinder $\left|x-x_{0}\right|<\delta$. But ∂V may meet the upper and lower boundary of U. If $P \in \partial V$ is on the upper or lower boundary of U, then

$$
\bar{\omega}(P)=\frac{1}{C_{1}} \log \left[C_{1}\{N \psi(P)+\phi(x)\}+1\right]+C_{2} \eta^{2}+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2} .
$$

We shall take C_{2} so large that $C_{2} \eta^{2}+\beta^{*}\left(P_{0}\right)+\varepsilon / 2>L$ (and $-C_{2} \eta^{2}+\beta_{*}\left(P_{0}\right)$ $-\varepsilon / 2<K)$. If $P \in \partial V$ is not on either the upper or the lower boundary of U, then $N \psi(P)+\phi(x) \geqq\left(1 / C_{1}\right)\left(\exp C C_{1}-1\right)$. In this case

$$
\begin{aligned}
\bar{\omega}(P) & \geqq \frac{1}{C_{1}} \log \left[C_{1} \frac{1}{C_{1}}\left(\exp C C_{1}-1\right)+1\right]+C_{2}\left|t-t_{0}\right|^{2}+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2} \\
& \geqq C+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2}=L-K+\beta^{*}\left(P_{0}\right)+\frac{\varepsilon}{2} \geqq L+\frac{\varepsilon}{2}
\end{aligned}
$$

Thus we have $\bar{\omega}^{*}(P)>L$ on $D \cap \partial V$, which proves (iii).
We shall now prove (iv). Since

$$
\begin{aligned}
\frac{\partial \bar{\omega}}{\partial x_{i}} & =\frac{\frac{\partial}{\partial x_{i}}(N \psi+\phi)}{C_{1}(N \psi+\phi)+1}, \\
\frac{\partial^{2} \bar{\omega}}{\partial x_{i} \partial x_{j}} & =\frac{\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}(N \psi+\phi)}{C_{1}(N \psi+\phi)+1}-\frac{C_{1} \frac{\partial}{\partial x_{i}}(N \psi+\phi) \frac{\partial}{\partial x_{j}}(N \psi+\phi)}{\left\{C_{1}(N \psi+\phi)+1\right\}^{2}},
\end{aligned}
$$

and

$$
\frac{\partial \bar{\omega}}{\partial t}=\frac{N \frac{\partial \psi}{\partial t}}{C_{1}(N \psi+\phi)+1}+2 C_{2}\left(t-t_{0}\right)
$$

we have

$$
\begin{aligned}
\boldsymbol{P} \bar{\omega}= & \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} \bar{\omega}}{\partial x_{i} \partial x_{j}}-\frac{\partial \bar{\omega}}{\partial t}=\frac{N\left\{\sum a_{i j}(x, t) \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}-\frac{\partial \psi}{\partial t}\right\}}{C_{1}(N \psi+\phi)+1} \\
& +\frac{\sum a_{i j}(x, t) \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}}{C_{1}(N \psi+\phi)+1}-C_{1} \frac{\sum a_{i j}(x, t) \frac{\partial}{\partial x_{i}}(N \psi+\phi) \frac{\partial}{\partial x_{j}}(N \psi+\phi)}{\left\{C_{1}(N \psi+\phi)+1\right\}^{2}} \\
& -2 C_{2}\left(t-t_{0}\right) .
\end{aligned}
$$

Since

$$
\frac{\partial \phi}{\partial x_{i}}=\frac{2 C}{\delta^{2}} \exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right)\left(x^{i}-x_{0}^{i}\right)
$$

and

$$
\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}=\left\{2 \delta_{i j}+4\left(x^{i}-x_{0}^{i}\right)\left(x^{j}-x_{0}^{j}\right) \frac{C C_{1}}{\delta^{2}}\right\} \frac{C}{\delta^{2}} \exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right),
$$

we have

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}= & 2 \sum_{i=1}^{n} a_{i i}(x, t) \frac{C}{\delta^{2}} \exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right) \\
& +\frac{4 C^{2} C_{1}}{\delta^{4}}\left[\sum_{i \neq j} a_{i j}(x, t)\left(x^{i}-x_{0}^{i}\right)\left(x^{j}-x_{0}^{j}\right)\right] \\
& \cdot \exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right)
\end{aligned}
$$

Set $A_{1}=\sup \sum a_{i i}(x, t), A_{2}=\sup \sum a_{i j}(x, t) \xi_{i} \xi_{j}$ for $(x, t) \in D,|\xi|=1$. Then

$$
\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} \leqq \frac{C}{\delta^{2}}\left(2 A_{1}+4 A_{2} C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right) \exp \left(C C_{1}\left|x-x_{0}\right|^{2} / \delta^{2}\right)
$$

Therefore

$$
\begin{aligned}
\boldsymbol{P} \bar{\omega}- & f\left(x, t, \bar{\omega}(x, t), \frac{\partial \bar{\omega}}{\partial x_{1}}(x, t), \cdots, \frac{\partial \bar{\omega}}{\partial x_{n}}(x, t)\right) \\
& \leqq \frac{1}{C_{1}(N \psi+\phi)+1}\left[-N+\frac{C}{\delta^{2}}\left(2 A_{1}+4 A_{2} C C_{1}\right) e^{C C_{1}}\right] \\
& +\left(B-C_{1}\right) \frac{\sum a_{i j}(x, t) \frac{\partial}{\partial x_{i}}(N \psi+\phi) \frac{\partial}{\partial x_{j}}(N \psi+\phi)}{\left\{C_{1}(N \psi+\phi)+1\right\}^{2}}+\Gamma-2 C_{2}\left(t-t_{0}\right) .
\end{aligned}
$$

Take $C_{1} \geqq B$, and note that $C_{1}(N \psi+\phi)+1 \leqq e^{C C_{1}}$ in $D \cap V$. If we take N so large that

$$
\left\{\frac{C}{\delta^{2}}\left(2 A_{1}+4 A_{2} C C_{1}\right)+\left(\Gamma+2 C_{2} \eta\right)\right\} e^{C C_{1}}<N,
$$

then we have

$$
\boldsymbol{P} \bar{\omega}-f\left(x, t, \bar{\omega}(x, t), \frac{\partial \bar{\omega}}{\partial x_{1}}, \cdots, \frac{\partial \bar{\omega}}{\partial x_{n}}\right)<0 \quad \text { on } D \cap V .
$$

This completes the proof.
Corollary. If $D \subset R^{n+1}$ is a bounded domain such that each point of its parabolic boundary $\partial_{p} D$ is parabolically touchable, then to each point of $\partial_{p} D$ we can construct barrier functions for the equation ∇u $=f\left(x, t, u,\left(\partial u / \partial x_{1}\right), \cdots,\left(\partial u / \partial x_{n}\right)\right)$, where f is assumed to satisfy the same condition stated in the theorem, that is, $|f(x, t, u, p)| \leqq B|p|^{2}+\Gamma$.

References

[1] Effros, E. G., and Kazdan, J. L.: On the Dirichlet problem for the heat equation. Indiana Univ. Math. J., 20, 683-693 (1971).
[2] Murakami, H.: On non-linear partial differential equations of the parabolic type. Proc. Japan Acad., 33, 530-535, 616-627 (1957).
[3] -: On the regularity of domains for parabolic equations. Proc. Japan Acad., 34, 347-348 (1958).
[4] -: Semi-linear partial differential equations of the parabolic type. Funkcialaj Ekvacioj, 3, 1-50 (1960).
[5] Simoda, S.: Nouveau dessin de construction des barrière-fonctions dans le problème de Dirichlet pour les équations semilinéaires du type élliptique et du second ordre. Memoirs of the Osaka Univ. the Liberal Arts and Education, 8, 1-3 (1959).

