80 [Vol. 30,

16. On Quasi-Translations in Eⁿ

By Hidetaka Terasaka

Department of Mathematics, Osaka University (Comm. by K. Kunugi, M.J.A., Feb. 12, 1954)

By a quasi-translation will be meant a sense preserving topological transformation f of a Euclidean space E^n onto itself such that for every bounded set M its iterated images $f^n(M)$ for $n \to \pm \infty$ have no cluster set, i.e.

$$\overline{\lim}_{n\to+\infty} f^n(M) = 0$$
,

or roughly speaking, $f^n(M)$ diverges to infinity when $n \to \pm \infty$.

A quasi-translation is a fortiori fixed point free and moreover regular (or singularity free) in the sense of Kerékjártó-Sperner. Thus a quasi-translation is by the theorem of Kerékjártó-Sperner topologically equivalent to a translation in the ordinary sense if E^n is a plane. Whether or not this is true for $n \ge 3$ remains still open. The purpose of this note is to give a simple proof of Theorem I, which may serve as a lemma to settle this question. The theorem of Kerékjártó-Sperner is an immediate consequence of our theorem.

Theorem I. Let f be a quasi-translation of E^n . Then there is an unbounded polyhedron π such that if D denotes the domain bounded by π and $f(\pi)$, then $f^n(D)$ is disjoint from $f^m(D)$ whenever $n \neq m$, n and m being arbitrary integers, and $\bigcup_{n=-\infty}^{\infty} f^n(\overline{D}) = E^n$.

We prove the theorem in the following version, in which the sense preservation is not even assumed.

Theorem II. Let f be a topological transformation of a sphere S^n onto itself with a single fixed point o such that if M is a set with $\overline{M} \ni o$, then

$$\lim_{n\to\pm\infty} f^n(M) = 0$$
.

Then there exists an open polyhedron π with the sole boundary at o such that if D denotes the domain bounded by $\pi \smile o^*$ and $f(\pi \smile o)$, then $f^n(D)$ is disjoint from $f^m(D)$ whenever $n \neq m$, n and m being arbitrary integers, and $\bigcup_{n=-\infty}^{\infty} f^n(\overline{D}) = S^n$.

Proof. To begin with, we shall define for any set M of S^n the measure $\mu(M)$ introduced by H. Whitney³⁾ as follows: Let a_1 , a_2 , ..., a_n ,... be a sequence of points dense in S^n , and put for any

^{*)} o denotes the point o as well as the set consisting of the point o. $\pi \smile o$ means the set sum of π and o.

point x of S^n

$$f_n(x) = \frac{1}{1 + d(x, a_n)} \cdot **$$

Given a set M, let

$$\mu_n(M) = \sup_{x \in M} f_n(x) - \inf_{x \in M} f_n(x)$$

and let

$$\mu(M) = \sum_{n=1}^{\infty} \frac{\mu_n(M)}{2^n}$$
.

Then $\mu(M)$ is defined for every set M of S^n and we have

 W_1 . $0 \leq \mu(M) \leq d(M)$.**

 W_2 . If $M \subset N$, then $\mu(M) \leq \mu(N)$.

 W_3 . If $M \subset U(N; \varepsilon)$,** then $\mu(M) < \mu(N) + \varepsilon$.

 W_4 . If $M \subset N$ and if N contains at least one point which has a positive distance from M, then $\mu(M) < \mu(N)$ (Whitney³⁾).

In the following we shall make free use of these properties $W_1 - W_4$ of Whitney's μ -measure.

For every point x of S^n consider the set

$$\bigcup_{n=0}^{\infty} f^{n}(x) = \{ f^{n}(x) \mid n \geq 0 \}$$

where $f^{0}(x)$ and $f^{1}(x)$ stand for x and f(x) respectively, and correspondingly the function

$$\mu(\bigcup_{n=0}^{\infty} f^n(x)) = g_+(x).$$

Then $g_+(x)$ is continuous at every point x except at x=o. For, given a positive number ε , there can be found a neighbourhood U of x such that $d(f^n(U)) < \varepsilon$ for all $n \ge 0$ by the continuity of f and by the hypothesis of regularity that

$$\lim_{n\to\infty} f^n(U) = 0$$

whenever $\overline{U} \ni o$. Then for every point $y \in U$

$$f^{n}(y) \subset U(\bigcup_{n=0}^{\infty} f^{n}(x); \varepsilon)$$

and

$$f^n(x) \subset U(\bigcup_{n=0}^{\infty} f^n(y); \varepsilon)$$

hold and hence by W_3

$$|\mu(\bigcup_{n=0}^{\infty}f^{n}(x))-\mu(\bigcup_{n=0}^{\infty}f^{n}(y))|<\varepsilon$$
,

whence the continuity of $g_{+}(x)$ at $x \neq 0$ follows.

Next put

$$g_{-}(x) = \mu(\bigcup_{n=0}^{-\infty} f^{n}(x)).$$

Then $g_{-}(x)$ is likewise continuous at x except at x=o and so is the function

^{**)} d(a, b), d(M) and $U(M; \epsilon)$ are the distance between a and b, the diameter of M and the ϵ -neighbourhood of M respectively on S^n .

$$\varphi(x) = g_{+}(x) - g_{-}(x)$$
.

Now take a point p fixed and different from o. Then, if n>0 is taken sufficiently large, $g_+(f^n(p))$ can be made as small as we please, while

$$g_{-}(f^{n}(p)) = \mu \left(\bigcup_{i=n}^{-\infty} f^{i}(p) \right)$$

> $\mu \left(\bigcup_{i=0}^{-\infty} f^{i}(p) \right) = g_{-}(p) > 0$,

so that $\varphi(f^n(p))=g_+(f^n(p))-g_-(f^n(p))$ becomes negative. By the same reason $\varphi(f^n(p))$ becomes positive if n<0 is chosen large enough in absolute value. It follows from the continuity of f that there must also be points x with $\varphi(x)=0$ other than o. If we put therefore

$$\Phi_0 = \{x \mid \varphi(x) = 0\},$$
 $\Phi_+ = \{x \mid \varphi(x) > 0\},$
 $\Phi_- = \{x \mid \varphi(x) < 0\},$

then Φ_0 , Φ_+ and Φ_- are all non void.

Since $\varphi(x)=0$ for $x \neq 0$ implies $\varphi(f(x))<0$ by the definition of $\varphi(x)$ and on account of W_4 , we have

$$\Phi_0 \smallfrown f(\Phi_0) = 0.$$

Moreover we have

$$f(\phi_{-}) \subset \phi_{-}$$
.

$$(1) f^{n}(U) \cap f^{n+1}(U) \neq 0,$$

and since $\overline{U} \ni o$, there is a positive number d such that for every $y \in U$

$$\mu(\bigcup_{i=0}^{-\infty} f^i(y)) > d > 0.$$

But given a positive number ε there is by the hypothesis on f a positive number N such that

$$f^n(U) \subset U(o; \varepsilon)$$

for all $n \ge N$. Therefore, if ε is chosen < d, then for any $x \in f^n(U)$ and for any $n \ge N$ we have, since $f^{-n}(x) \in U$,

$$egin{aligned} arphi(x) &= \mu(igcup_{i=0}^{\infty} f^i(x)) - \mu(igcup_{i=0}^{-\infty} f^i(x)) \ &< \mu(igcup_{i=0}^{\infty} f^i(x)) - \mu(igcup_{i=-n}^{-\infty} f^i(x)) \ &< \varepsilon - d \ &< 0, \end{aligned}$$

which indicates that all $f^n(U)$ are contained in \mathscr{O}_- if $n \geq N$. If we denote by D_- the component of \mathscr{O}_- which contains $f^N(U)$, then $f^n(U)$ is wholly contained in D_- whenever $n \geq N$, in consequence of the relation (1).

Since the boundary of φ_{-} is evidently contained in φ_{0} , every boundary point of D_{-} is also a point of φ_{0} .

 $f(D_{-})$ is wholly contained in D_{-} . For first, since D_{-} and $f(D_{-})$ have the set $f^{N+1}(U)$ in common, they intersect. Second, if there were a point x of $f(D_{-})$ outside D_{-} , connect x and a point q of $f^{N+1}(U)$ by an arc within $f(D_{-})$. Then it must intersect the boundary \dot{D}_{-} of D_{-} and thus there would exist a point r of \dot{D}_{-} in $f(D_{-})$, which is absurd, since $r \in \dot{D} - \subset \varphi_0$ but $f(D_{-}) \cap \varphi_0 = 0$.

Now let $\{U_t\}$ be a covering of S^n-o consisting of a countable number of domains U_t such that $\overline{U}_t \ni 0$ and $U_t \smallfrown f(U_t) \not= 0$, and corresponding to each U_t let D_t be the component of \mathcal{O}_- described above, that is the component of \mathcal{O}_- with the property that $f^n(U_t)$ are all contained in D_t if $n \geq N_t$ for some natural number N_t . We assert that in reality D_t all coincide.

To prove this, suppose the contrary were the truth, and changing suitably the suffixes of D_i if necessary, let D_1 , D_2 ,..., D_t ,... $(2 \le i < \infty)$ be the finite or infinite sequence of all distinct D_i . Then, if p is any point of $S^n - o$, there is an element of $\{U_i\}$, say U_i , which contains p, but, since D_i contains by its definition $f^{N_i}(U_i)$, p is contained in $f^{-N_i}(D_i)$. Consequently we have

$$(2) \qquad \qquad \bigcup_{n=-\infty}^{\infty} \bigcup_{i=1}^{\infty} f^{n}(D_{i}) = S^{n} - o.$$

On the other hand, since D_i are disjoint, we have

$$f^n(D_i) \smallfrown f^n(D_i) = 0$$

for every n whenever $i \neq j$. But since $D_i \supset f(D_i)$, we have

$$f^n(D_i) \smallfrown f^m(D_j) = 0$$

for any integers n and m. Thus by (2) S^n-o is seen to be expressed as the sum of at least two, and at most a countably infinite number of, disjoint domains

$$\bigcup_{n=-\infty}^{\infty} f^n(D_i),$$

which is absurd. Therefore all D_t must coincide, and each D_t is nothing other than D_- we have considered above.

Thus we have obtained the following result:

Under the hypothesis on f of Theorem II there exists a domain $D_ \subset \Phi_-$ such that

(3)
$$D_{-}\supset f(D_{-}), \ \dot{D}_{-} \smallfrown f(\dot{D}_{-}) = 0 \ and \ \bigcup_{n=-\infty}^{\infty} f^{n}(D_{-}) = S^{n} - o.$$

By covering D_{-} in the usual way with a family of cubes which intersect D_{-} but which are disjoint from $f^{-1}(\dot{D}_{-})$, we can obtain from D_{-} a domain P bounded by one or more of open polyhedra with the sole boundary at o such that

$$D_{-} \subset P \supset f^{-1}(D_{-}).$$

Proceeding exactly as above we can obtain analogous to D_{-} a component D_{+} of \mathcal{Q}_{+} such that (3), D_{-} substituted by D_{+} , holds true. Now, if the boundary of P consists of more than one component, let π be that component which can be joined by an arc j to a point of D_{+} outside P. Then π is obviously the required polyhedron.

References

- 1) B. v. Kerékjártó: On a geometric theory of continuous groups, Ann. Math., **26**, 105–117 (1925).
- 2) E. Sperner: Über die fixpunktfreien Abbildungen der Ebene, Abh. Math. Sem. Hamburg, 10, 1-47 (1934).
 - 3) H. Whitney: Regular families of curves, Ann. Math., 34, 244-270 (1933).