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16. On Quasi-Translations in E"

By Hidetaka TERASAKA
Department of Mathematics, Osaka University
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1954)

By a quasi-translation will be meant a sense preserving topo-
logical transformation f of a Euclidean space E™ onto itself such that
for every bounded set M its iterated images f"(M) for n—> oo
have no cluster set, i.e.

mn»iwf”(M)=0,
or roughly speaking, f*(M) diverges to infinity when n— 4o,

A quasi-translation is a fortiori fixed point free and moreover
regular (or singularity free) in the sense of Kerékjart6-Sperner.
Thus a quasi-translation is by the theorem of Kerékjart6-Sperner®®
topologically equivalent to a translation in the ordinary sense if
E" is a plane. Whether or not this is true for #=8 remains still
open. The purpose of this note is to give a simple proof of Theorem
I, which may serve as a lemma to settle this question. The theorem
of Kerékjart6-Sperner is an immediate consequence of our theorem.

Theorem I. Let f be a quasi-translation of E™. Then there is
an unbounded polyhedron = such that if D denotes the domain bounded
by = and f(w), then f*(D) is disjoint from f™(D) whenever nm, n
and m being arbitrary integers, and U, . f”(ﬁ): E*,

We prove the theorem in the following version, in which the
sense preservation is not even assumed.

Theorem II. Let f be a topological transformation of a sphere
S* onto itself with a single fived point o such that if M is a set with
Mo, then

lim,, ... f*M)=o.

Then there exists an open polyhedron = with the sole boundary at o such
that if D denotes the domain bounded by m-—o* and f(mww—o), then
FUD) 1s disjoint from f™D) whenever n=xm, n and m being arbitrary
integers, and U, -« f™D)=S".

Proof. To begin with, we shall define for any set M of S™ the
measure u(M) introduced by H. Whitney® as follows: Let a;, a,,
veey Q... be a sequence of points dense in S®, and put for any

*) o denotes the point o as well as the set consisting of the point 0. z~0 means
the set sum of r and o.
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point x of S*

— 1 £
MO raeay

Given a set M, let
pa(M)=sup f(2)—inf f(x)
xEM rEM
and let

wan=s, 90,
Then w(M) is defined for every set M of S* and we have
Wi 0=uM)=dM).*»
W,. If MCN, then pu(M) =< u(N).
W,. If MCUWN;e),** then w(M)<w(N)+e.
W, If MCN and if N contains at least one point which has
a positive distance from M, then w(M)<u(N) (Whitney®).
In the following we shall make free use of these properties
W,— W, of Whitney’s u-measure.
For every point x of S consider the set
UnZo f*(@)= { f™(@)|n = 0}
where f°(x) and f'(z) stand for z and f(x) respectively, and cor-
respondingly the function
w(UnZo FY(@)) =9 ().
Then g.(x) is continuous at every point x except at x=o. For,
given a positive number ¢, there can be found a neighbourhood U
of = such that d(f*(U))<e for all =0 by the continuity of f and
by the hypothesis of regularity that
lim,,,. f*(U)=0
whenever U%o0. Then for every point ye U
S"Y) S U (U2 f™@); €)
and
[r@) CU(UZo f"W); €)
hold and hence by W,
[ (UnZo @) — 1 (U 220 fY@)) | <6,
whence the continuity of g.(x) at z=-o follows.
Next put

g-(@)=p(UzZ @)
Then g_(z) is likewise continuous at = except at x=o0 and so is the
funetion

*%)  d(a, b), d(M) and U(M; &) are the distance between & and b, the diameter
of M and the e-neighbourhood of M respectively on S”.
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p(@)=9.(x)—9_(2).

Now take a point p fixed and different from o. Then, if n>0
is taken sufficiently large, g¢.(f"(p)) can be made as small as we
please, while

9-(f"@))=p (U5 f1(D))

> p (Uiss f4(0))=9-(p)>0,
so that o(f"®)=g.(f"®))—9g_(f"»)) becomes negative. By the
same reason ¢(f"(p)) becomes positive if #<0 is chosen large enough
in absolute value. It follows from the continuity of f that there
must also be points x with @(x)=0 other than o. If we put there-
fore

D, = {x] go(w)-:O},

¢+: {.’L‘[¢(£E)>0} ’

O_={zx|p)<0},
then @, @, and @_ are all non void.

Since @(x)=0 for x=0 implies p(f(2))<0 by the definition of

@(x) and on account of W,, we have
@)"‘f (¢o)=0-
Moreover we have
flo)Co-.

Now let U be a domain such that U3 0 and U~f(U)2=0. Then
for every n
(1) )~ fH(U) =0,
and since U$o, there is a positive number d such that for every
yelU

p (U f'(¥)>d=>0.
But given a positive number ¢ there is by the hypothesis on f a
positive number N such that
S U)CU(o; €)
for all n=N. Therefore, if ¢ is chosen <d, then for any z € f»(U)
and for any n=N we have, since f"(x) € U,
(@) = p(Uo f1(@)) — p(UiZ% f1(@))

< p(Uiz fi@) — u(UiZZ. f(@))

<e—d

<0,
which indicates that all f(U) are contained in @_ if n=N. If we
denote by D_ the component of ¢@_ which contains f¥(U), then
JF™(U) is wholly contained in D_- whenever n=N, in consequence of
the relation (1).
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Since the boundary of @. is evidently contained in @, every
boundary point of D_ is also a point of @,.

F(D.) is wholly contained in D.. For first, since D. and f(D.)
have the set f¥**(U) in common, they intersect. Second, if there
were a point # of f(D.) outside D_, connect x and a point ¢ of
JS¥*(U) by an arc within f(D_). Then it must intersect the boundary
D_ of D_ and thus there would exist a point r of D_ in f(D_), which
is absurd, since r € D—C@, but F(D)~d,=0.

Now let {U;} be a covering of S®—o consisting of a countable
number of domains U, such that U,%0 and U,~f(U)=:0, and cor-
responding to each U; let D, be the component of @_. described
above, that is the component of @_ with the property that f*(U;)
are all contained in D; if n=N, for some natural number N;,, We
assert that in reality D, all coincide.

To prove this, suppose the contrary were the truth, and chang-
ing suitably the suffixes of D, if necessary, let D,, D,..., D,...
(2<i< ) be the finite or infinite sequence of all distinet D,. Then,
if p is any point of S™—o, there is an element of {U;}, say U,
which contains p, but, since D, contains by its definition f¥:(U,),
p is contained in f~"(D,). Consequently we have

( 2 ) Unoz—oo U';I“;l fn(Dg)zsn—‘O.
On the other hand, since I); are disjoint, we have
S D)~ D=0
for every n whenever ¢=-j. But since D,D f(D,), we have
S™D)~ f™(Dy)=0
for any integers » and m. Thus by (2) S”—o is seen to be expressed
as the sum of at least two, and at most a countably infinite number
of, disjoint domains
U'r::—oo fn(Dl)’
which is absurd. Therefore all D, must coincide, and each D, is
nothing other than D_ we have considered above.
Thus we have obtained the following result:

Under the hypothesis on f of Theorem II there exists o domain
D_C®_ such that

(8) D_SFWD), D_~fD)=0 and U,"— f(D)=S"—o.
By covering D_ in the usual way with a family of cubes which

intersect D_ but which are disjoint from f ‘1(1')-), we can obtain
from D_ a domain P bounded by one or more of open polyhedra
with the sole boundary at o such that

D_CPD f-Y(D.).
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Proceeding exactly as above we can obtain analogous to D_ a
component D, of @, such that (8), D_ substituted by D., holds
true. Now, if the boundary of P consists of more than one com-
ponent, let = be that component which can be joined by an arc
j to a point of D, outside P. Then = is obviously the required
polyhedron.

References

1) B. v. Kerékjart6: On a geometric theory of continuous groups, Ann. Math.,
26, 105-117 (1925).

2) E. Sperner: Uber die fixpunktfreien Abbildungen der Ebene, Abh. Math.
Sem. Hamburg, 10, 1-47 (1934).

3) H. Whitney: Regular families of curves, Ann. Math., 34, 244-270 (1933).



