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(Comm. by T. FURUHATA, M.J.A., March 12, 1954)

VI. Mother-descendant combinations through several
consanguineous marriages

1. Special combination with several consanguineous marriages

We have discussed in the preceding chapter" the mother-
descendant combinations through a single consanguineous marriage.
We now attempt to generalize the problem to the case where
several consanguineous marriages intervene between a mother and
her descendant. Our present purpose is to determine the probability
of a combination which consists of the original individual A and
of its descendant A, consanguineous marriages interjacent between
them occurring t times, and which is designated, with an easily
comprehensible routine notation, by

or briefly, provided no confusion can arise, by

By definition, Che reduced probability c,;% is given by

;,(;)- .;Aa_b_; a)
r=l

with aoboa and ab$v, where the summation extends over all
the possible sets of t-1 genotypes A (r=l, t-1).

We can really permit here also the degenerate cases where
some of he n’s with lr<t vanish. But, hese exceptional cases
will be postponed to a later chapter. In the present section we
shall deal with a special case where the n’s are all equal to unity.
Its defining equation then becomes

whence follows, as verified by induetion, the formula

(,; .(Z; ev)=A+2-+AQ(Z; ev) + 4uR(ev)
+ 2vtZ(a; )+2w:T(aB; SV);

A=L (2-+2-’), u-- 2--,
r=l r=l r=l s=r+l

1) Cf. Proc. Japan Acad. 30 (1954), 152-155. There the value of S(ij; ik) (p. 154,
1. 6)should be read -1/4k(1-4i) instead of -k(1-4k).
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the last formula remains true even for t=l provided an empty
sum is understood, as usual, to be equal to zero.

2. Generic combinations with several consanguineous marriages
We now consider the generic case, i.e. the probability

with nl (r=l, t). Its defining equation becomes
;(a;) ;,_(aB; ab); ,(ab; )

and leads to the desired formula

which remains valid even when t-1. We remark here especially
that the present formula remains valid regardless of the values of
the n’s with lr<t provided merely nl.

We next consider more generally a probability of the form

with nl for lr<t and n>l. It is defined by an equation

We obtain the 2ormula
+1;t(,,;,(aB; $)=A,+ 2-t-’ 2,Q(aZ;

+ 4(u, + w,)R(, v) + 2-+ (v, + 2w,)Z(Z;
where we put

tt--1

A,=H(2-’+2-’0, u,= 2-’-’,
r=l r=l s=+l

-I
v, 2-+A: H 2-x’-, w,’ H 2-’,-r--I s=r+l s=l

It should be noted that the last formula for ;.>;,,;>, loses
its effect for t-0 as well as for t’--0.

3. General mother.descendant combinations through several
consanguineous marriages

In the present section we shall deal with the probability ;>.
It is given by a recurrence equation

,;,>(Z;)-(Z; ab);>(ab; ).
By retaining the notations introduced in the preceding sections, we
first get

;,(Z; $)=A+2--+,G(Z; Sv)
+ 4(u +w)()+2-(v + 2w)S(Z; $).

In any case with n>l, we get briefly

Finally, in case corresponding to the last one of the preceding
section, i.e. in case n>l, we et

4. Distribution of genoypes after consanguineous marriages

The present section is devoted to illustrte very notable
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phenomenon concerning the distribution of genotylaes in a genera-
tion after consanguineous marriages. Up to now we have dealt
with several mother-descendant combinations (A; A>)..., of which

the probabilities are designated by r... (a/9; Sv)=A-.. (aft; Sv), re-
spectively. For each combination, if we eliminate mother’s type
by summing up over whole possible range, then we obtain the
probability of descendant A, alone, i.e. the relative frequency of
genotype A, in the generation of descendant, which will be des-
ignated by . () , r. (ab; v)-, A-. (ab; ).

In ease of a simple mother-descendant combination, with prob-
ability , without intervention of any consanguineous marriage,
it is given by

A(&])-, rr(ab; SV)--A.
The last relation shows that the distribution of A in the genera-
tion of descendant then coincides just with one in the original
generation.

We next consider the mother-descendant combination denoted
by (A; A,)..,. The distribution in the generation of descendant
is then given by

A;() A.+ 4(u + w)R($),
where

t-1

u+w--.__] I 2--, =/z+-l;
rO +1

R(ii)= 1 i(1 i), Z(ij) ij (i j).

In ease of mother-descendant combination (A;A)( with
n> 1, we get

In quite a similar manner, we obtain

and furthermore

AI; ,($v)=A., + 4(u + w,)R(8.v)
A.Ic;%()=A for % > 1,

w,,)R($A,(;,,)(,,;),,($) A..,.+ 4(u;, + v),
where

We can thus assert the following proposition: The distribution
of genotypes deviates in a generation immediate after any consan-
guineous marriage, while the deviation disappears in a generation
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distant after the last consanguineous narriage, The deviation of geno-
type A in the former case amounts to R($v) mult@lied by a definite
positive factor depending only on the generation-numbers which ante-
cede the last marriage and refer to last successive collateral separations
occurring immediately after consanguineous marriages. Consequently,
the frequency of A in the generation of descendant increases or de-
creases according to whether it is homozygous or heterozygous.

Thus, we are led to a conjecture concerning practical observations.
Suppose, in fact, there exists a population which is isolated hered-
itarily rom its neighboring populations and in which consanguineous
marriages take place to a considerable extent. For instance, one
may imagine a population living on an isolated island which lacks
facilities of communication. If one will observe frequencies of an
inherited character in the population, it will then be ound out
hat the requencies o homozygous and heterozygous types are
more than and less than those expected from the supposition of an
equilibrium state, respectively.

We have seen above that the deviation of distribution disappears
in the second generation after a consanguineous marriage. This
phenomenon resembles the stability of an equilibrium state o dis-
ribution based on the buffer-effect by random matings. However,
these two phenomena are really distinct in nature. In act, the
disappearance of deviation is caused, in our present case, by random
matings between a deviated population and an undeviated one. On
the contrary, 2or disappearance of deviation in case of buffer-effect,
the random matings are supposed to take place within the deviated
population. It is however shown that the result of buffer-effect
coincides also quite with the ordinary one. Consequently, although
our discussions have been exclusively based on the random matings
between a deviated population and an undeviated one, the results
remain valid even when the random matings take place within the
deviated population.

5. Asymptotic behaviors of the probabilities
The asymptotic behaviors of the probability lc;-, as eaeh

among l, , v and m tends to infinity, ean be readily dedueed
Crom its expression derived above, though the results which will
be obtained are regarded as quite plausible. We obtain, in fact,
he ollowing limit equations:

lim l;(a; )=;%_l__;z_++=l,,;,h_(a; ),z

z
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where we put =/, ,/, n=n/ or lst-z. In these
equations, the generation-numbers except the one which tends
infinity may be quite arbitrary; in particular, 1 may be equal to
zero, a case which will be easily comprehensible.

We now observe the asymptotic behaviors of he probability

(;, as t. It depends on the choice of a sequence {,;n}

It will be sufficient o investigate an essential case where
n=l (r-1,2, ...). We suppose that an arbitrary sequence
consisting of positive integers , , (r-l, 2,...) is given. If there
exists a number such that- (const) for r >
then we have

and if

then we have
lim x,; (/3;

The latter case may be regarded as a particular one included in
the former. In fact, being restricted to an integer, the assump-
tion i= for r >r is equivalent to lim =.

Otherwise, the sequence [; )t(aB; Sv)} oscillates, as t increases,
within certain upper and lower bounds.

To state more precisely, we introduce he notations defined by

lim , lim ,
4 4

2+-I’ 2+-I
for which there hold evidently the inequalities

gg, 0.4/7.
We can then assert that, in general, there hold, for any sequence

the estimations

Au + vR(ii) lim;)(aB; ii) lim;)(a; ii) A, + R(ii),

A+ R(ij) lim (; t(a; ij) lira (; (a; ij) A+ vR(ij).


