92. A Proof for a Theorem of M. Nakaoka

By Katuhiko Mizuno
Osaka City University, Osaka
(Comm. by K. Kunugi, m.J.A., June 12, 1954)

1. Let X be a simply connected topological space with vanishing homotopy groups $\pi_{i}(X)$ for $i<n, n<i<q$ and $q<i$. Then M. Nakaoka ${ }^{1)}$ proved that the transgression τ in the Cartan-Serre fiber space associated with X and the geometrical realization $\overline{\boldsymbol{k}}_{n}^{7+1}$ of the Eilenberg-MacLane invariant \boldsymbol{k}_{n}^{q+1} are related as follows:

$$
\begin{equation*}
\tau \boldsymbol{b}=-\overline{\boldsymbol{k}}_{n}^{o+1} \tag{1}
\end{equation*}
$$

where \boldsymbol{b} is the basic cohomology class of the fiber.
The purpose of this note is to construct a singular structure of an arbitrary fiber space (E, p, B) satisfying
(2) (i) the total space E is a simply connected space with vanishing homotopy groups $\pi_{i}(E)$ for $i>q$ with a base point e_{0},
(ii) the base space B is a space with vanishing homotopy groups $\pi_{i}(B)$ for $i \geqq q$ with a base point $b_{0}=p\left(e_{0}\right)$,
(iii) the projection $p: E \longrightarrow B$ induces the isomorphisms $\pi_{i}(E) \approx \pi_{i}(B)$ for $i<q$,
(iv) the fiber $F=p^{-1}\left(b_{0}\right)$ is a space with a base point e_{0}.

And, as an application, we shall give a proof of the similar relation as (1) in an arbitrary fiber space satisfying (2) about the Postnikov invariant. ${ }^{2)}$

This paper makes full use of the results and terminologies of the preceding paper by the author. ${ }^{3)}$
2. Let Y be a topological space. A singular n-simplex T of Y is a function $T\left(x_{0}, \ldots, x_{n}\right) \in Y$ defined for $0 \leq x_{i}, x_{0}+x_{1}+\cdots+x_{n}=1$. For any element $\beta=\sum_{j j} m_{j} \beta_{j}$ of $K_{r}(n)$, the β-face T_{β} of T is an r-chain defined as

$$
T_{\beta}=\sum_{j} m_{j} T_{\beta_{j}}, \quad T_{\beta_{j}}\left(x_{0}, \ldots, x_{r}\right)=T\left(y_{0}, \ldots, y_{n}\right),
$$

where $y_{i}=0$ if $i \neq \beta_{j}(k)$ for all $k=0, \ldots, r$, and $y_{i}=\sum_{k} x_{k}$ for $\beta_{j}(k)=i$. In particular, the ε^{i}-face of T will be denoted simply by $T^{(\varepsilon)}$ and is called the i-th face.

[^0]For our future convenience we shall fix a homeomorphism h_{n} ($n=1,2, \ldots$) of n-simplex into the face of the ($n+1$)-prism excepting the lower base as follows:

$$
h_{n}\left(x_{0}, \ldots, x_{n}\right)=\left(y_{0}, \ldots, y_{n}, t\right)
$$

where $t=\min \left\{1,(n+2) \min _{0 \leq i \leq n} x_{i}\right\}$ and $y_{i}=\left\{(n+2) x_{i}-t\right\} /\{(n+2)-(n+1) t\}$. And, we write a singular n-cylinder f of Y for a function $f\left(x_{0}, \ldots\right.$, $\left.x_{n}, t\right) \in Y$ defined for $x_{0}+x_{1}+\cdots+x_{n}=1, \min _{0 \leq i \leq n} x_{i}=0$ and $0 \leq t \leq 1$, with its partial $\operatorname{map} f_{1}=\left.f\right|_{t=1}$.
3. For any singular n-simplex $T^{\prime \prime}$ of B, we can select a singular n-simplex T^{\prime} of B which is compatible and homotopic with T^{\prime} such that

$$
T_{*}^{\prime}\left(x_{0}, \ldots, x_{n}\right)=b_{0} \quad \text { if }(n+2) \min _{0 \leq i \leq n} x_{i} \geq 1
$$

then, in the following, we write $M(B)$ for the minimal subcomplex whose simplexes satisfying this condition.

Let us define an $F D$-map $p_{*}^{-1}: M(B) \longrightarrow S(E)$ in dimension $\leq q$ as follows:

Let T^{\prime} is a singular n-simplex of $M(B)$, we shall define a singular cylinder $f\left(T^{\prime \prime}\right)$ as the partial map of $T^{\prime} h_{n}^{-1}$, and in particular $f\left(T^{\prime}\right)(1)=b_{0}$ if $n=0$.

Then, by the covering homotopy theorem, we have a singular cylinder $\bar{f}\left(T^{\prime}\right)$ of E such as $p \bar{f}\left(T^{\prime}\right)=f\left(T^{\prime}\right)$ in dimension $\leq q$ inductively. Especially, we choose $f\left(T^{\prime}\right)$ to be the collapsed one if T^{\prime} is collapsed.

Now, the partial map $\bar{f}\left(T^{\prime}\right)_{1}$ induces an element of $\pi_{n-1}(F)$, and if $n \leq q$, by our original assumption, we can extend the map $\bar{f}\left(T^{\prime}\right)_{1}$ over the upper base of the prism. Especially, we choose a collapsed singular n-simplex as this extension if T^{\prime} is collapsed.

If we combine the singular cylinder $\bar{f}\left(T^{\prime}\right)$ with this extension, we have a map $\bar{f}_{*}\left(T^{\prime}\right)$ of the face of the ($n+1$)-prism excepting the lower base into the space E, consequently we have a singular n-simplex of $S(\boldsymbol{E})$, denoted by $p_{*}^{-1}\left(T^{\prime}\right)$, as $p_{*}^{-1}\left(T^{\prime}\right)=\bar{f}_{*}\left(T^{\prime}\right) h_{n}$. Thus $p p_{*}^{-1}\left(T^{\prime}\right)=T^{\prime}$.

This map p_{*}^{-1} induces a map of the minimal complex $M(B)$ isomorphically onto a minimal complex $M(E)$ of E in dimension $<q$ since the projection p satisfies the condition (2) (iii). And, for each q-simplex T_{q}^{\prime} of $M(B)$ there is at least one q-simplex T_{q} of $M(E)$ such that $p T_{q}=T_{q}^{\prime}$. Any two such simplexes T_{q} are compatible. One of these simplexes T_{q} will be selected and denoted by $p_{*}^{-1}\left(T_{q}^{\prime}\right)$. Thus $p p_{*}^{-1}\left(T_{q}^{\prime}\right)=T_{q}^{\prime}$. For the collapsed q-simplex T_{q}^{\prime}, we choose $p_{*}^{-1}\left(\underline{T}_{q}^{\prime}\right)$ to be the collapsed q-simplex in $M(E)$.

On the other hand, for any singular n-simplex T_{n} of $M(E)$, we shall define a singular n-simplex $T_{n}^{\prime}=p T_{n}$ and an element ψ_{n} $=\psi\left(T_{n}\right)$ of $F_{n}\left(\pi_{q}, q\right)^{4)}$ such as

$$
\psi_{n}(\beta)=d\left(p_{*}^{-1}\left(p T_{n}\right)_{\beta}, T_{n \cdot \beta}\right) \quad \text { for any element } \beta \text { of } K_{q}(n),
$$

and, we have an $F D$-map

$$
p_{*}: M(E) \longrightarrow M(B) \times F\left(\pi_{q}, q\right) .
$$

If we attempt to continue the definition of p_{*}^{-1} for $(q+1)$ simplexes T_{q+1}^{\prime} of $M(B)$, we can only go as far as to define a map $\bar{f}\left(T_{q+1}\right)_{1}$ and we have a cochain \bar{k}_{q-1} defined by

$$
\bar{k}_{q-1}\left(T_{\imath+1}^{\prime}\right)=c\left(\bar{f}\left(T_{\imath+1}^{\prime}\right)_{1}\right)
$$

Now, each element $\left(T_{n}^{\prime}, \psi_{n}\right)$ in the image of p_{*} satisfies the condition

$$
\begin{equation*}
\sum_{i=0}^{q+1}(-1)^{i} \psi_{n}\left(\gamma \varepsilon_{q+1}^{i}\right)+\bar{k}_{q-1}\left(T_{n \cdot \gamma}^{\prime}\right)=0 \tag{3}
\end{equation*}
$$

for any element γ of $K_{q+1}(n)$. Conversely, for any element (T_{n}^{\prime}, ψ_{n}) of the cartesian product $M(B) \times F\left(\pi_{q}, q\right)$ satisfying the condition (3), there exists a unique singular simplex of $M(E)$, denoted by p_{*}^{-1} $\left(T_{n}^{\prime}, \psi_{n}\right) .{ }^{5} \quad$ Thus $p_{*} p_{*}^{-1}\left(T_{n}^{\prime}, \psi_{n}\right)=\left(T_{n}^{\prime}, \psi_{n}\right)$.

It is obvious that \bar{k}_{q-1} is a cocycle of $Z^{q+1}\left(B ; \pi_{q}\right)$ and its cohomology class $\overleftarrow{\boldsymbol{k}}_{q-1}$ is uniquely determined only by the fiber space (E, p, B). And, if E is of the same homotopy type with X in $\mathbf{1}, \overline{\boldsymbol{k}}_{q-1}$ is a geometrical realization of the Eilenberg-MacLane invariant \boldsymbol{k}_{n}^{q+1} associated with our fiber space.
4. Consider in our fiber space the transgression

$$
\tau=p^{*-1} \delta^{*}: H^{q}\left(F ; \pi_{q}\right) \longrightarrow H^{q+1}\left(B ; \pi_{q}\right),
$$

where $\delta^{*}: H^{q}\left(\boldsymbol{F} ; \pi_{q}\right) \longrightarrow H^{q+1}\left(E, F ; \pi_{q}\right)$ is the coboundary homomorphism, and $p^{*}: H^{q+1}\left(B ; \pi_{q}\right) \longrightarrow H^{q+1}\left(E, F ; \pi_{q}\right)$ is the isomorphism induced by p.

Since any ($q-1$)-dimensional face of any singular q-simplex of $M(E) \cap S(F)$ is collapsed, the basic cohomology class $\boldsymbol{b} \in H^{q}\left(F ; \pi_{q}\right)$ is represented by a cocycle b which is defined as

$$
b\left(T_{q}\right)=d\left(p_{*}^{-1} p T_{q}, T_{q}\right)=\psi\left(T_{q}\right)\left(\varepsilon_{q}\right)
$$

for any T_{q} of $M(E) \cap S(F)$.
Let us define a cochain u of $C^{q}\left(E, F ; \pi_{q}\right)$ as follows:

$$
\begin{aligned}
u\left(T_{q}\right) & =\psi\left(T_{q}\right)\left(\varepsilon_{q}\right) & & \text { if } T_{q} \in M(E)-S(F) \\
& =0 & & \text { if } T_{q} \in M(E) \cap S(F) .
\end{aligned}
$$

[^1]The coboundary homomorphism

$$
\delta^{\#}: Z^{q}\left(F ; \pi_{q}\right) \longrightarrow Z^{q+1}\left(E, F ; \pi_{q}\right)
$$

is calculated as follows:

$$
\delta^{\#} v\left(T_{q+1}\right)=\sum_{i \in I}(-1)^{i} v\left(T_{q+1}^{(i)}\right)
$$

for any cocycle $v \in Z^{q}\left(F ; \pi_{q}\right)$ and for any singular ($q+1$)-simplex $T_{q+1} \in M(E)$ where $I=\left\{i ; 0 \leq i \leq q+1\right.$ and $\left.T_{q+1}^{(i)} \in S(F)\right\}$.

Then, it follows from (3) that

$$
\begin{align*}
& p^{\#} \bar{k}_{q-1}\left(T_{q+1}\right)+\delta^{\#} b\left(T_{q+1}\right)+\delta_{r} u\left(T_{q+1}\right) \tag{4}\\
& \quad=\bar{k}_{q-1}\left(p T_{q+1}\right)+\sum_{i=0}^{q+1}(-1)^{i} \psi\left(T_{q+1}\right)\left(\varepsilon_{q+1}^{i}\right)=0
\end{align*}
$$

where $p^{\#}: Z^{q+1}\left(B ; \pi_{q}\right) \longrightarrow Z^{q+1}\left(E, F ; \pi_{q}\right)$ is the homomorphism induced by p, and $\delta_{r}: C^{q}\left(E, F ; \pi_{q}\right) \longrightarrow C^{q+1}\left(E, F ; \pi_{q}\right)$ is the relative coboundary homomorphism.

The similar relation as (1) about the Postnikov invariant can be proved as the immediate consequence of (4).

[^0]: 1) M. Nakaoka: Transgression and the invariant $\boldsymbol{k}_{n 2}^{q+1}$, Proc. Japan Acad., 30, 363-368 (1954).
 2) Refer 3). Originally reported in the Math. Reviews, 13 (1952).
 (M. M. Postnikov: Doklady Akad. Nauk URSS., 76, 359-362 (1951); ibid., 76, 789791 (1951)).
 3) K. Mizuno: On the minimal complexes, Jour. Inst. Polytech., Osaka City Univ., 5, 41-51 (1954).
[^1]: 4) For the sake of brevity, we write $\pi_{q}=\pi_{q}(E)=\pi_{q}(F)$.
 5) For example, for any element (T_{q}^{\prime}, ψ_{q}) of $M(B) \times F\left(\pi_{q}, q\right)$, there exists a unique singular simplex T_{q} of $M(E)$, compatible with $p_{*}^{-1}\left(T_{q}^{\prime}\right)$ and satisfies $d\left(p_{*}^{-1}\left(T_{q}^{\prime}\right), T_{q}\right)=\psi_{q}$ (ε_{q}).
