92. A Proof for a Theorem of M. Nakaoka

By Katuhiko MIZUNO

Osaka City University, Osaka (Comm. by K. KUNUGI, M.J.A., June 12, 1954)

1. Let X be a simply connected topological space with vanishing homotopy groups $\pi_i(X)$ for i < n, n < i < q and q < i. Then M. Nakaoka¹⁾ proved that the transgression τ in the Cartan-Serre fiber space associated with X and the geometrical realization \overline{k}_n^{q+1} of the Eilenberg-MacLane invariant k_n^{q+1} are related as follows:

(1)
$$\tau \boldsymbol{b} = - \overline{\boldsymbol{k}}_n^{q+1}$$

where b is the basic cohomology class of the fiber.

The purpose of this note is to construct a singular structure of an arbitrary fiber space (E, p, B) satisfying

- (2) (i) the total space E is a simply connected space with vanishing homotopy groups $\pi_i(E)$ for i > q with a base point e_0 ,
 - (ii) the base space B is a space with vanishing homotopy groups $\pi_i(B)$ for $i \ge q$ with a base point $b_0 = p(e_0)$,
 - (iii) the projection $p: E \longrightarrow B$ induces the isomorphisms $\pi_i(E) \approx \pi_i(B)$ for i < q,
 - (iv) the fiber $F=p^{-1}(b_0)$ is a space with a base point e_0 .

And, as an application, we shall give a proof of the similar relation as (1) in an arbitrary fiber space satisfying (2) about the Postnikov invariant.²⁾

This paper makes full use of the results and terminologies of the preceding paper by the author.³⁾

2. Let Y be a topological space. A singular *n*-simplex T of Y is a function $T(x_0, \ldots, x_n) \in Y$ defined for $0 \le x_i, x_0 + x_1 + \cdots + x_n = 1$. For any element $\beta = \sum_j m_j \beta_j$ of $K_r(n)$, the β -face T_{β} of T is an r-chain defined as

$$T_{\beta} = \sum_{j} m_{j} T_{\beta_{j}}, \quad T_{\beta_{j}}(x_{0}, \ldots, x_{r}) = T(y_{0}, \ldots, y_{n}),$$

where $y_i=0$ if $i \neq \beta_j(k)$ for all $k=0, \ldots, r$, and $y_i=\sum_k x_k$ for $\beta_j(k)=i$. In particular, the ε^i -face of T will be denoted simply by $T^{(i)}$ and is called the *i*-th face.

¹⁾ M. Nakaoka: Transgression and the invariant k_n^{q+1} , Proc. Japan Acad., **30**, 363-368 (1954).

²⁾ Refer 3). Originally reported in the Math. Reviews, 13 (1952).

⁽M. M. Postnikov: Doklady Akad. Nauk URSS., **76**, 359–362 (1951); ibid., **76**, 789–791 (1951)).

³⁾ K. Mizuno: On the minimal complexes, Jour. Inst. Polytech., Osaka City Univ., 5, 41-51 (1954).

K. MIZUNO

For our future convenience we shall fix a homeomorphism h_n (n=1, 2, ...) of *n*-simplex into the face of the (n+1)-prism excepting the lower base as follows:

$$h_n(x_0,\ldots,x_n)=(y_0,\ldots,y_n,t)$$

where $t = \min\{1, (n+2)\min_{0 \le i \le n} x_i\}$ and $y_i = \{(n+2)x_i - t\}/\{(n+2) - (n+1)t\}$. And, we write a singular *n*-cylinder *f* of *Y* for a function $f(x_0, \ldots, x_n, t) \in Y$ defined for $x_0 + x_1 + \cdots + x_n = 1$, $\min_{0 \le i \le n} x_i = 0$ and $0 \le t \le 1$, with its partial map $f_1 = f|_{t=1}$.

3. For any singular *n*-simplex T' of B, we can select a singular *n*-simplex T'_* of B which is compatible and homotopic with T' such that

$$T'_*(x_0, \ldots, x_n) = b_0 \quad \text{if } (n+2) \min_{0 \le i \le n} x_i \ge 1,$$

then, in the following, we write M(B) for the minimal subcomplex whose simplexes satisfying this condition.

Let us define an *FD*-map $p_*^{-1}: M(B) \longrightarrow S(E)$ in dimension $\leq q$ as follows:

Let T' is a singular *n*-simplex of M(B), we shall define a singular cylinder f(T') as the partial map of $T'h_n^{-1}$, and in particular $f(T')(1)=b_0$ if n=0.

Then, by the covering homotopy theorem, we have a singular cylinder $\overline{f}(T')$ of E such as $p\overline{f}(T')=f(T')$ in dimension $\leq q$ inductively. Especially, we choose f(T') to be the collapsed one if T' is collapsed.

Now, the partial map $\overline{f}(T')_1$ induces an element of $\pi_{n-1}(F)$, and if $n \leq q$, by our original assumption, we can extend the map $\overline{f}(T')_1$ over the upper base of the prism. Especially, we choose a collapsed singular *n*-simplex as this extension if T' is collapsed.

If we combine the singular cylinder $\overline{f}(T')$ with this extension, we have a map $\overline{f}_*(T')$ of the face of the (n+1)-prism excepting the lower base into the space E, consequently we have a singular *n*-simplex of S(E), denoted by $p_*^{-1}(T')$, as $p_*^{-1}(T') = \overline{f}_*(T')h_n$. Thus $pp_*^{-1}(T') = T'$.

This map p_*^{-1} induces a map of the minimal complex M(B)isomorphically onto a minimal complex M(E) of E in dimension $\langle q \rangle$ since the projection p satisfies the condition (2) (iii). And, for each q-simplex T'_q of M(B) there is at least one q-simplex T_q of M(E) such that $pT_q = T'_q$. Any two such simplexes T_q are compatible. One of these simplexes T_q will be selected and denoted by $p_*^{-1}(T'_q)$. Thus $pp_*^{-1}(T'_q) = T'_q$. For the collapsed q-simplex T'_q , we choose $p_*^{-1}(T'_q)$ to be the collapsed q-simplex in M(E).

432

No. 6]

On the other hand, for any singular *n*-simplex T_n of M(E), we shall define a singular *n*-simplex $T'_n = pT_n$ and an element $\psi_n = \psi(T_n)$ of $F_n(\pi_q, q)^{4}$ such as

 $\psi_n(\beta) = d(p_*^{-1}(pT_n)_{\beta}, T_{n \cdot \beta})$ for any element β of $K_q(n)$,

and, we have an FD-map

$$p_*: M(E) \longrightarrow M(B) \times F(\pi_q, q).$$

If we attempt to continue the definition of p_*^{-1} for (q+1)simplexes T'_{q+1} of M(B), we can only go as far as to define a map $\overline{f}(T_{q+1})_1$ and we have a cochain \overline{k}_{q-1} defined by

$$\overline{k}_{q-1}(T'_{q+1}) = c(\overline{f}(T'_{q+1})_1).$$

Now, each element (T'_n, ψ_n) in the image of p_* satisfies the condition

(3)
$$\sum_{i=0}^{q+1} (-1)^i \psi_n(\gamma \varepsilon_{q+1}^i) + \overline{k}_{q-1}(T'_{n}) = 0$$

for any element γ of $K_{q+1}(n)$. Conversely, for any element (T'_u, ψ_n) of the cartesian product $M(B) \times F(\pi_q, q)$ satisfying the condition (3), there exists a unique singular simplex of M(E), denoted by p_*^{-1} $(T'_u, \psi_n)^{-5}$. Thus $p_* p_*^{-1}(T'_u, \psi_n) = (T'_u, \psi_n)$.

It is obvious that \overline{k}_{q-1} is a cocycle of $Z^{q+1}(B; \pi_q)$ and its cohomology class \overline{k}_{q-1} is uniquely determined only by the fiber space (E, p, B). And, if E is of the same homotopy type with X in 1, \overline{k}_{q-1} is a geometrical realization of the Eilenberg-MacLane invariant k_n^{q+1} associated with our fiber space.

4. Consider in our fiber space the transgression

 $\tau = p^{*-1} \delta^* : H^q(F; \pi_q) \longrightarrow H^{q+1}(B; \pi_q),$

where $\delta^*: H^q(F; \pi_q) \longrightarrow H^{q+1}(E, F; \pi_q)$ is the coboundary homomorphism, and $p^*: H^{q+1}(B; \pi_q) \longrightarrow H^{q+1}(E, F; \pi_q)$ is the isomorphism induced by p.

Since any (q-1)-dimensional face of any singular q-simplex of $M(E) \cap S(F)$ is collapsed, the basic cohomology class $\boldsymbol{b} \in H^q(F; \pi_q)$ is represented by a cocycle \boldsymbol{b} which is defined as

$$b(T_q) = d(p_*^{-1}pT_q, T_q) = \psi(T_q)(\varepsilon_q)$$

for any T_q of $M(E) \cap S(F)$.

Let us define a cochain u of $C^{q}(E, F; \pi_{q})$ as follows:

$$\begin{array}{ll} u(T_q)\!=\!\psi(T_q)(\varepsilon_q) & \quad \text{if} \ T_q \in M(E)\!-\!S(F) \\ =\!0 & \quad \text{if} \ T_q \in M(E)\!\cap S(F). \end{array}$$

4) For the sake of brevity, we write $\pi_q = \pi_q(E) = \pi_q(F)$.

⁵⁾ For example, for any element (T'_q, ϕ_q) of $M(B) \times F(\pi_q, q)$, there exists a unique singular simplex T_q of M(E), compatible with $p^{-1}_*(T'_q)$ and satisfies $d(p^{-1}_*(T'_q), T_q) = \phi_q$ (ε_q).

The coboundary homomorphism

 $\delta^{\#}: Z^{q}(F; \pi_{q}) \longrightarrow Z^{q+1}(E, F; \pi_{q})$

is calculated as follows:

$$\delta^{\#} v(T_{q+1}) = \sum_{i \in I} (-1)^{i} v(T_{q+1}^{(i)})$$

for any cocycle $v \in Z^{q}(F; \pi_{q})$ and for any singular (q+1)-simplex $T_{q+1} \in M(E)$ where $I = \{i; 0 \le i \le q+1 \text{ and } T_{q+1}^{(i)} \in S(F)\}.$

Then, it follows from (3) that

$$\begin{array}{ll} (4) & p^{\sharp}\bar{k}_{q-1}(T_{q+1}) + \delta^{\sharp}b(T_{q+1}) + \delta_{r}u(T_{q+1}) \\ & = \overline{k}_{q-1}(pT_{q+1}) + \sum_{i=0}^{q+1}(-1)^{i}\psi(T_{q+1})(\varepsilon_{q+1}^{i}) = 0 \end{array}$$

where $p^{\#}: Z^{q+1}(B; \pi_q) \longrightarrow Z^{q+1}(E, F; \pi_q)$ is the homomorphism induced by p, and $\delta_r: C^q(E, F; \pi_q) \longrightarrow C^{q+1}(E, F; \pi_q)$ is the relative coboundary homomorphism.

The similar relation as (1) about the Postnikov invariant can be proved as the immediate consequence of (4).