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155. Dirichlet Problem on Riemann Surfaces. I
(Correspondence o Boundaries)

By Zenjiro KURAMOCH
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A_., Oct. 12, 1954)

Let _R be an open abstract Riemann surface and let [_R.} (n-
1, 2, ...) be an exhaustion with compact relative boundaries [_R,}. )
Then _R-_R, is composed of a finite number of disjoint non compact
subsurfaces [G} (i-1, 2, i.: n-l, 2, ...). Let [G} be a
sequence of non compact surfaces such that G.D ., G:.-0.
Two sequences {G} and {G} are called equivalent, if and only if,
for any given number m, there exists a number n such that GG
and vice versa. We correspond an ideal point (component) to a class
of equivalent sequences and denote the set of all ideal boundary
points by B. A topology is introduced on R+B by the completion
of R_R_. It is clear that _R+ B is closed, compact and tha B is totally
disconnected. This topology restricted in R_ is homeomorphic to the
original opology. We call this topology A-topology and denote
R+B by __R.*

Let R be an abstract Riemann surface given as a covering sur-
face over _R. We define the distance of two points p and p of R
by inf((p, p)), where (p, p) is the diameter of the projection of
a curve on R connecting p and p., and define the accessible boundary
points of R by the completion of R with respect to this metric.
When a continuous curve L on R converges to the boundary of R
and the projection of L on .R_ tends to a point of R__*, we say that
L determines an accessible boundary point (abbreviated to A.B.P.).
It is well known that these two definitions are equivalent.

In this paper we suppose that _R_ is a null-boundary Riemann
surface.

Lemma 1.1. Let R be a covering surface over _R_, let z=-f(z)
(z e R_R_, z e R) be the mapping function from R into R and let L be a
curve o, R which determines an A.B.P. whose projection on B is Zo.
Suppose that R does not cover a subset of positive capacity of R.
We map the universal covering surface R conformally onto the unit
circle U’[]<I by -q(z). If the image l> of L in U tends to a
point o on 15]-1, then the composed function z_--f(cp-($)) has the

1) Thought this paper, we denote a relative boundary of G by G.
2) It is clear that a metric introduced in A-topology.
3) In this case, it is proved that does not osciliate.
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same limit Z_o, when tends to o along any Stolz’s path.
Proof. Let [I/(Zo)} be a sequence of neighbourhoods of Z_o with

compact relative boundaries fV(_zo)} such that V..(go) V./(Z_o)...
( V.(zo)-O and let Ro be a compact disc o2 such that the boundary

of the projection of R has positive capacity in Ro. Define a super
harmonic function () such that ,() is harmonic in [(-o- V(o)}
[){proj (R)o}, .,(o)=0 on the boundary of proj(R) contained in

1 f ,()ds=l. Since is ao, ,()--M on ,,+ (o) and -2- n
null-boundary Riemann surface, ,,,(g) is uniquely determined and
lim,-. We denote by ,,6 the domain: [-o(l-r,
-$o]] - and denote he end part of outside of [zl-r by l.2
Then we have

.(f())M’ on 3,r,, nio 1 )
where >0 and io is the minimal number such that f(l.)e o()"
If f($) did not have limit o in A,,, there would exist a sequence
[$,} such that lim $,-$o" e A,r, and a number no and a sequence
[,,} such that f($,.) V%(z); i’io. Therefere there exists a number
N and i such that

(f(v,))N" i"i’, nno. 2
From (1) and (2), we have N>o,(f($,))M,’. lira M:, which
is a contradiction.

If the A.B.P. lies on , our assertion is trivial. From this
lemma, we can deduce the following.

Lemma 1.2. Under the same conditions as those of the lemma 1.1,
let E be a set on ]]-1. If the cluster set of :f() on E, when
tends to points of E, is a set of capacity zero, then E is a set of
linear measure zero.

Proof. From Lemma 1.1, we can suppose that f()has cluster
set in E, along a Stolz’s path. We denote by E a closed set
points p of E such that f($) tends uniformly when $ tends to p
along a Stolz’s path. Then f(E)E is also closed. Let [V} be a
sequence with compact relative boundaries [V} such hat VV+,
V-f(E), where V is the closure of V. Denote by () a con-

tinuous super-harmonic function such that () is harmonic in
-0- V) (o proj R), ():0 on projR0, o,()-M on V
+ V and -21 f()n ds:l. Then ]im, M--. Consider () on

U then we hae rom the super-harmonicity of ,,()that lira. This is absurd.
An extension of Fatou’s theorem
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Lemma 1.3. Let R be a null-boundary Riemann surface, let 0__,
be two fixed points of R__ and let a be a point of R_. Denote by

U(z_) a harmonic function such that
U,(z)+ log z=O in the neighbourhood of
U(z)-log z_ is harmonic in the neighbourhood of a.

Then U(z) is determined uniquely. Put U/ (z_) - O, if U(z_) O
and U+(.z_) Ua(Z), if U(z) > O. Then

Uo+(z_)-d-Uo+(O)Uo_/(z), Uo_+(z_)Uo+(z)+Uo+(O)+d,
where d depends on O_ and only.

Proof. Denote by D_o the domain such that 0=>Uo_(Z_)" z e D_o
and by D_o its relative boundary. Put V(a, _z)-U+(z_)-U_o+(z)
-U/(O). Then there are four cases as follows:
1) The case when a De, z CDq. In this case we have Uo+(g)

Ue(_z), U+(O)= U(_O) and V(a, z_) U/ (z) Uo(Z) U(O_).
2) The case when aeDe, zDo. In this case we have Uo+(z)

U_o(z), U/(_QO)-o and V(a, z)- U+(z)- Uo_(z).
3) The case when a Do_, z e Do. In this case we have U_o+(Z)-0,

U/(_0_O)- U.(O) and V(a, z_)- U(z)- U(O).
4) The case when a eDo_, z eD_o. In this case we have U_o+(_z.)

U+(O)-0 and V(a, z)= U(z).
Since R has a null-boundary and moreover V(a, z) is bounded rom
above and is sub-harmonic with respect to z_ or fixed a and sub-
harmonic with respect to a for fixed z respectively, V(a, z) takes its
maximum d-Ua,(Z_t)-U_,(at) at some points a and _z on D_o.

In such a case U(O)- U_o(a’)- Uo(_Z_)-O, hence

V(a, z)<d a, z_ R.
Therefore, Ua+(z_)-d Ua+(O) U+(z).

We can prove the latter part similarly.
Let R be a covering surface of positive boundary Riemann

surface over _R_ and let z_=f(z): z_ e R__, z e R be the mapping function.
We denote by G,(z, 19) the Green’s function of R, with pole at p and
let h,(z, p) be its conjugate. Let a,, b, ,he points of R where
f(a)-Q, f(b,)- respectively. Then we have

,1 fUo_f(z))--2r Uo_(f(r,e’)dO+ G,(z, b)

--, Gn(z, a)+ log

where z=e--’,-r,e’, G,(z, O) is the Green’s function of R with
pole at O, and c is the first non vanishing coefficient of the expan-
sion of f(z) with respect to the local parameter defined in the
neighbourhood of O.

Put
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m(r, f-a)- rjU+

N(r,, f--a)--fTM n(t, a)--n(O, a) dt.
t

We have, by lemma 1.3.
]m(r, f-a)-m(r, )IU_o+(a) +d,

m(r a) +N(r a) -m(r )+N(r )+q(r)
where

o(r) Uo_(a) + d + ]log
If T(r, )-lim (N(r, )+m(r, ))< , we say that z--f(z) is a

covering of bounded type.
Theorem 1.1. We map the universal covering surface R of R

onto U" I$]<I conformlly by -o(z) such that 0-o(0). If z--f(z)
is a covering of bounded type, then the composed function z--z($)
from to R_ has angular limits almost everywhere on l$I-1 and
there exists a set E of measure 2r on []-1 such that every Stolz’s
path terminating at every point of E determines an A.B.P. of R.

Proof. If is the equilibrium distribution of unit-mass on a

set H of positive capacity on R, we have T(r)-fN(r, z)dt(z)+0(1),

and T(r) is finite if and only if N(r, z) is finite everywhere. As to
the mapping from R to U, we can say that the universal covering
surface R of R, is mapped onto a simply connected domain D,
containing $--0, and situated in [1<1, and that a point a of R
corresponds to a system of equivalent points [a} (j--l, 2,...)" a
e U. Let G,(, a) and G(, a.) be the Green’s function of D
and ]$]<r respectively. Then we have

G(z, a)= G,(, a).
Since the Green’s function is an increasing function of the domain,
and since there exists a number n such hat D contains l$l<r for
given r, we have

G(z, a)-lim G(z, a)> , G($, a).
This implies that the composed mapping z-f(p-()) is also of bound-
ed type. Put W(z_)-=exp(Uo_(z_)+iVo_(Z)), where Vo_(Z)is the conjugate
function of Uo(Z). A small circle Wi< corresponds to a disc D
of R__, whence we have N(r, a,)< for ar in D. Hence the analytic
function exp(Uo_(f@-’()))+iVo_(f(qa-($)))-W() is a function of
bounded type in U’. Accordingly W() has angular limits almost
everywhere on l$l=1 by Fatou’s theorem. Since the Green’s func-
tion G(z, O) of R has angular limit zero almost everywhere on
there exists a set E on ll= 1 such that W($) has angular limits and
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G(z, O) has angular limits zero. Let l be a Stolz’s path terminating
at 0 e E such that W() has limit Wo along l when $ tends to $o.
We denote by L and the images of 1 on R and on _R_ respectively.
We shall prove that L determines an A.B.P.

We see at once that L tends to the boundary of R, because
G(z, O) tends to zero along L. Assume that L_ does not converge
to a point of __R*, then we can find two points p and p. e R_R_* and two
sequences of points [q} and [q} on _L_L such that limq--p and

lim q-p. Accordingly we can find a point p0 e R and a neighbour-

hood V(po) such that there exists a sequence o points q’ on subarc, of L which tends to po, where , is the part o L contained in

V(po) and situated between q’ and q’. Let W’(z) z_--f(cp-($)) be
the branch of W($) corresponding to 2,. Since W’(z_)l-exp U_o(_z_),
without loss o generality we can suppose that [W(z)} is bounded
in V(po). Thus [W(z)} is a normal 2amily. Choose a subsequence

[W"(z_)} which converges. Let W(z_) be its limit 2unction. Since
W"(z_) converges to Wo on ,, when i’t-, W(_z) Wo. On the
other hand W(z_)l-]W(z_.)] or every i’ and W(_z)const., which
is a contradiction.

Corollary.4 Let R be a covering surface over R__. If there exists
a set E of positive capacity on R__ such that every point of E is covered
by R a finite number of times, then z=f(o-l()) has angular limits
almost everywhere I1-1.

In 2act, we can easily deduce that in this case T(r, ) is finite.

Corollary. Let be a covering surface over R. If R is a

covering of bounded type over R, then is also of bounded type over _R_.
Proof. There exists a system o points [a} (j-l, 2, ...) of

which lie on a point a of R. Since [z, a)G(z, a) we have
at once

T(R, r)_T(r, ),
where G(z, a,) and G(z, a,) are Green’s functions of / and R
respectively.

4) This corollary has been proved by M. Ohtsuka. See "On a covering surface
over an abstract Riemann surface ", Nagoya Math. Jour., 4, 109-118 (1952).


